
Software products and services since 1973
www.forth.com

SWIFTX AVR
for the Arduino Prototyping Platform

FORTH, Inc. makes no warranty of any kind with regard to this material, including, but not lim-
ited to, the implied warranties of merchantability and fitness for a particular purpose. FORTH,
Inc. shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

SwiftForth, SwiftX, SwiftOS, pF/x, polyFORTH, and chipFORTH are trademarks of FORTH, Inc. All
other brand and product names are trademarks or registered trademarks of their respective
companies.

Copyright © 1998-2011 by FORTH, Inc. All rights reserved.
Current revision: February, 2011

This document contains information proprietary to FORTH, Inc. Any reproduction, disclosure, or
unauthorized use of this document, either in whole or in part, is expressly forbidden without
prior permission in writing from:

FORTH, Inc.
Los Angeles, California USA

www.forth.com

SwiftX AVR for the Arduino Prototyping Platform
SECTION 1: OVERVIEW

This paper discusses the SwiftX Interactive Development Environment (IDE) specific
to the Atmel AVR family of microcontrollers. It demonstrates the use of SwiftX in
the development of a very simple embedded application, a Morse code beacon that
flashes out the universal distress signal “S.O.S.” on an LED.

The application is ported to two of the popular Arduino hardware prototyping plat-
form boards, the Uno and the Diecimila. SwiftX is used here as an alternative to the
Arduino “sketches” development environment.

1.1 About SwiftX

SwiftX is FORTH, Inc.’s interactive cross compiler, a fast and powerful tool for the
development of software for embedded microprocessors and microcontrollers.
SwiftX is based on the Forth programming language and is itself written in Forth.

SwiftX is available for the following microprocessor and microcontroller families:

• Atmel AVR

• Freescale 68HC11

• Freescale 68HC12 (S12, S12X, etc.)

• Freescale 68HCS08

• Freescale 68K

• Freescale 6801 / Renesas 6303

• Freescale 6809

• Aeroflex UTMC 69R000

• Intel (NXP, SiLabs, others) 8051

• Atmel, Cirrus, NXP, ST Microelectronics (and other) ARM core

• Freescale ColdFire

• Renesas H8H (H8/300H, H8S)

• Intel (AMD, other) i386

• Texas Instruments MSP430

• Patriot PSC1000

• Harris RTX2010

The suite of SwiftX cross compilers are themselves applications that run in the
SwiftForth for Windows programming environment. As such, they inherit all the fea-
tures of SwiftForth and extend its interactive development environment to manage
multiple program and data spaces as well as generate the code and data that fill
them. The SwiftForth and SwiftX host environments as well as all target implemen-
tations are written entirely in Forth.

SwiftX provides the user with the most intimate, interactive relationship possible
Overview 3

SwiftX AVR for the Arduino Prototyping Platform
with the target system, speeding the software development process and helping to
ensure thoroughly tested, bug-free code. It also provides a fast, multitasking kernel
and libraries to give you a big head start in developing your target application.

1.2 Evaluation Boards

SwiftX is available ready to run on a wide variety of off-the-shelf evaluation boards.
Two of the popular Arduino boards will be used in this sample demo application.

The Arduino Uno board features the Atmel AVRmega328P microcontroller, with 32
kB of flash memory, 2 kB SRAM, and 1 kB EEPROM.

The older Arduino Diecimila board has the Atmel AVRmega168 microncontroller,
with 16 kB flash, 1 kB SRAM, and 512 bytes EEPROM.

Details about the Arduino boards are provided in the next section.
4 Overview

SwiftX AVR for the Arduino Prototyping Platform
Section 2: Arduino Platform

This section describes the Arduino boards used in the demo application. The SwiftX
IDE replaces the Arduino development environment, so this section only discusses
the Arduino hardware platform.

2.1 About Arduino

The remander of this subsection is adapted from the Arduino project’s online docu-
mentation at http://www.arduino.cc/en/Guide/Introduction.

2.1.1 What is Arduino?

Arduino is a tool for making computers that can sense and control more of the
physical world than your desktop computer. It's an open-source physical computing
platform based on a simple microcontroller board.

Arduino can be used to develop interactive objects, taking inputs from a variety of
switches or sensors, and controlling a variety of lights, motors, and other physical
outputs. Arduino projects can be standalone, or they can communicate with soft-
ware running on your computer. The boards can be assembled by hand or pur-
chased preassembled.

2.1.2 Why Arduino?

There are many other microcontrollers and microcontroller platforms available for
physical computing. Parallax Basic Stamp, Netmedia's BX-24, Phidgets, MIT's Handy-
board, and many others offer similar functionality. All of these tools take the messy
details of microcontroller programming and wrap it up in an easy-to-use package.
Arduino also simplifies the process of working with microcontrollers, but it offers
some advantage for teachers, students, and interested amateurs over other systems:

• Inexpensive - Arduino boards are relatively inexpensive compared to other micro-
controller platforms. The least expensive version of the Arduino module can be
assembled by hand, and even the preassembled Arduino modules cost less than
$50.

• Open source and extensible hardware - The Arduino is based on Atmel's AVR micro-
controllers. The plans for the modules are published under a Creative Commons
license, so experienced circuit designers can make their own version of the module,
extending it and improving it. Even relatively inexperienced users can build the
breadboard version of the module in order to understand how it works.
Arduino Platform 5

http://www.arduino.cc/en/Guide/Introduction

SwiftX AVR for the Arduino Prototyping Platform
2.2 Arduino Uno

2.2.1 Uno Board Overview

The Arduino Uno board (see Figure 1) is a microcontroller board based on the Atmel
ATmega328P. It has 14 digital input/output pins (of which 6 can be used as PWM
outputs), 6 analog inputs, a 16 MHz crystal oscillator, a USB connection, a power
jack, an ICSP header, and a reset button.

Figure 1. Arduino Uno Board

2.2.2 Uno Board Features

Microcontroller ATmega328P

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (up to 6 PWM outputs)

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Memory (flash, SRAM, EEPROM) 32 kB, 2 kB, 1 kB

Clock Speed 16 MHz
6 Arduino Platform

SwiftX AVR for the Arduino Prototyping Platform
2.3 Arduino Diecimila

2.3.1 Diecimila Board Overview

The Arduino Diecimila (see Figure 2) is a microcontroller board based on the Atmel
ATmega168. It has 14 digital input/output pins (of which 6 can be used as PWM out-
puts), 6 analog inputs, a 16 MHz crystal oscillator, a USB connection, a power jack,
an ICSP header, and a reset button.

Figure 2. Arduino Diecimila Board

2.3.2 Diecimila Board Features

Microcontroller ATmega168

Operating Voltage 5V

Input Voltage (recommended) 7-12 V

Input Voltage (limits) 6-20 V

Digital I/O Pins 14 (up to 6 PWM outputs)

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Memory (flash, SRAM, EEPROM) 16 kB, 1 kB, 512 bytes

Clock Speed 16 MHz
Arduino Platform 7

SwiftX AVR for the Arduino Prototyping Platform
2.4 Arduino Board Documentation

Schematics for the Arduino Uno and Diecimila boards are attached to the end of
this document. Further details about these boards can be found on the Arduino
project web site:

http://arduino.cc/en/Main/Boards
8 Arduino Platform

http://arduino.cc/en/Main/Boards

SwiftX AVR for the Arduino Prototyping Platform
Section 3: Implementation Issues

This section covers specific issues involving this implementation of SwiftX on the
AVR family of processors.

3.1 Implementation Strategy

A variety of options are available when implementing a Forth kernel on a particular
processor. In SwiftX, we attempt to optimize, as much as possible, both for execu-
tion speed and object compactness. This section describes the implementation
choices made in this system.

3.1.1 Execution Model

The execution model is a subroutine-threaded scheme. The AVR’s subroutine stack
is used by target primitives as Forth’s return stack, to contain return addresses.

You may see examples of SwiftX AVR compilation strategies by decompiling some
simple definitions. For example, the source definition for DABS is:

: DABS (d1 -- d2) DUP 0< IF DNEGATE THEN ;

If you decompile it using the command SEE DABS, you get:

09B2 R27 -Y ST BA93
09B4 R26 -Y ST AA93
09B6 0< RCALL ECDC
09B8 R26 R27 OR BA2B
09BA Y+ R26 LD A991
09BC Y+ R27 LD B991
09BE 09C2 BRNE 09F4
09C0 09C4 RJMP 01C0
09C2 DNEGATE RCALL 96DF
09C4 RET 0895 ok

The leftmost column shows the address, while the rightmost column shows the
cells making up this definition. You can easily see the combination of direct code
substitution for simple primitives, such as DUP and the IF code, combined with calls
to 0< and DNEGATE.

If you would like to study these implementation strategies, look at the source file
SwiftX/src/avr/code/core.f.

3.1.2 Code Optimization

More extensive optimization is provided by a rule-based optimizer, included with
Implementation Issues 9

SwiftX AVR for the Arduino Prototyping Platform
SwiftX Pro, that can optimize a number of common high-level phrases. This opti-
mizer is normally running, but can be turned off for debugging or comparison pur-
poses. For example, consider this test definition:

: TRY 4 CELLS + 7 AND ;

With the optimizer turned off, you would get:

SEE TRY
176A (LITERAL) CALL 0E943000
176E LITERAL 4
1770 R26 R26 ADD AA0F
1772 R27 R27 ADC BB1F
1774 + CALL 0E948B01
1778 (LITERAL) CALL 0E943000
177C LITERAL 7
177E AND JMP 0C946A01 ok

But with it turned on, you would get:

SEE TRY
1762 8 R26 ADIW 1896
1764 0 R27 ANDI B070
1766 7 R26 ANDI A770
1768 RET 0895 ok

This code is significantly smaller and faster because it has pre-applied CELLS to the
literal 4 and in-lined the + and AND.

You can manually control the optimizer using the commands +OPTIMIZER to turn it
on (the default condition) and -OPTIMIZER to turn it off.

3.1.3 Data Format and Memory Access

The AVR is an 8-bit processor, but the Forth Virtual Machine is implemented with a
16-bit cell size, meaning that all addresses, stack items, and single-precision num-
bers are two bytes (16 bits) wide. The AVR is a “Harvard architecture” machine, with
potentially 64 kB each of directly addressable code and data space.

Because all definitions must reside in on-chip flash memory (the only code space
available), all definitions must be in the kernel, which is downloaded to flash as a
single operation via the ISP module. It is not practical to add definitions interac-
tively, as with targets that support execution of code in RAM.

Some members of the ATmega group of parts provide extra flash memory. For
example, the ATmega128 provides 128 kB of flash. However there are restrictions
on how this flash can be used, as the Forth 16-bit implementation doesn’t support
directly addressing more than 64 kB.
10 Implementation Issues

SwiftX AVR for the Arduino Prototyping Platform
3.1.4 Stack Implementation and Rules of Use

The Forth virtual machine has two stacks with 16-bit items, located in internal
SRAM. Stacks grow downward from high addresses. The return stack is imple-
mented using the CPU’s subroutine stack, which carries return addresses for nested
calls. A program may use the return stack for temporary storage during the execu-
tion of a definition, however the following restrictions should always be respected:

• A program shall not access values on the return stack (using R@, R>, 2R@, or 2R>) that
it did not place there using >R or 2>R;

• When within a DO loop, a program shall not access values that were placed on the
return stack before the loop was entered;

• All values placed on the return stack within a DO loop shall be removed before I, J,
LOOP, +LOOP, or LEAVE is executed;

• All values placed on the return stack within a definition shall be removed before the
definition is terminated or before EXIT is executed.

3.1.5 Multitasker Implementation

A task switch in the SwiftX multitasker requires the following steps:

1. Save T on the data stack.
2. Save both stack pointers in the task’s user variables SSAVE and RSAVE, respectively.

The three-byte STATUS area contains either a WAKE or SLEEP code in the first byte. The
remainder is the address of the next task in the round robin.

The task’s STATUS byte controls task behavior. For example, PAUSE sets STATUS to
WAKE and suspends the task; it will wake up after exactly one circuit through the
round robin. You may also store WAKE in the STATUS of a task in an interrupt routine
to set it to wake up. When a task is being awakened, its STATUS is set to SLEEP as part
of the start-up process.

3.2 I/O Registers

Refer to the Atmel data sheet for your particular MCU for details regarding the use
of the I/O registers.

SwiftX defines names for the registers, corresponding to their Atmel designations,
in a file for each MCU. The files’ names take the form SwiftX\src\avr\reg_<mcu>.f.

The I/O registers 0–3FH are mapped to data space addresses 20–5FH. The register
names are defined in SwiftX such that when you assemble a reference to a register
with an IN or OUT instruction, it will use the I/O address. All other references will
use the data space address, so you may access these registers using C@ and C!, even
interactively for debugging (assuming you’re connected to a running target).

In addition to defining the registers, SwiftX has also defined individual bit masks
Implementation Issues 11

SwiftX AVR for the Arduino Prototyping Platform
for defined bits in many of these registers.

For example:

LABEL (OUT) BEGIN UDRE USR SBIS AGAIN
 R16 UDR OUT RET END-CODE

Note in this example (from serial.f) the use of the bit number UDRE with register USR.

3.3 Interrupt Handling

The procedure for defining an interrupt handler in SwiftX involves two steps: defin-
ing the actual interrupt-handling code, and attaching that code to a processor inter-
rupt.

The handler itself is written in code. The usual form begins with LABEL <name> and
ends with an RETI (Return from Interrupt) and END-CODE. (CODE should not be used,
as such routines are not invoked as subroutines.)

INTERRUPT takes an address for the handler and a vector address, and compiles a
jump instruction in the vector. When an interrupt occurs, control is passed to the
handler without any further overhead.

The word INTERRUPT is only available at compile time, because it generates code in
flash memory.

The vector assignments vary for the different members of the AVR family. Names
are provided for versions supported by SwiftX as shipped in the reg_<mcu>.f file.
These should be used in preference to literal numbers, to improve maintainability.
Consult your MCU reference manual for the vector assignments for your processor.

Except for saving and restoring registers, no other overhead is imposed by SwiftX,
and no task needs to be directly involved in interrupt handling. If a task is perform-
ing additional high-level processing (for example, calibrating data acquired by inter-
rupt code), the convention in SwiftX is that the handler code performs only the
most time-critical processing, and notifies a task of the event by modifying a vari-
able or by setting the task to wake up. Information on task control may be found in
the SwiftX Reference Manual’s Section 5.

Glossary

INTERRUPT (addr1 addr2 —)
Install addr1 in the interrupt vector at addr2.

RETI (—)
Macro used at the end of an interrupt handler that assembles code to pop the regis-
ters pushed by the code in the vector table and return from the interrupt.
12 Implementation Issues

SwiftX AVR for the Arduino Prototyping Platform
3.4 Timers

The system millisecond timer is maintained using the Timer 0 interrupt. See
Atmel’s Microcontroller Data Book for details about Timer0. The number of millisec-
onds is accumulated by the <TIMER0> interrupt handler in the variable MSECS.

COUNTER returns the current value of a free-running counter of clock interrupts.
TIMER, used after COUNTER, obtains a second count, subtracts the value left on the
stack by COUNTER, then displays the elapsed time (in milliseconds) since COUNTER.
COUNTER and TIMER may be used to time processes or the execution of commands.

The usage is:

COUNTER <process or command to be timed> TIMER

3.5 Serial Channel

The AVR internal UART is used as the SwiftX Cross-Target Link (XTL), whose control
is described in Section 4.9 of the SwiftX Reference Manual.

The driver for this port may be found in SwiftX\src\avr\code\serial.f and may be
used as an example for an application using the serial port.
Implementation Issues 13

SwiftX AVR for the Arduino Prototyping Platform
14 Implementation Issues

SwiftX AVR for the Arduino Prototyping Platform
Section 4: SwiftX AVR Assembler

Virtually all Forth systems include an assembler; SwiftX cross compilers provide an
assembler for the target CPU, which in this case is a member of the AVR family of
microcontrollers.

The AVR family has many variants designated by numeric identifiers such as the
AT90S8515 or ATmega103. In general, each executes a subset of the instructions
defined for the whole family, and varies by the amount of internal memory and
which I/O devices it supports. Consult the user’s manual for your particular variant
of the AVR family for the specific instructions that processor will accept. For conve-
nience in this book, we will refer to the AVR only.

This section supplements, but does not replace, the CPU manufacturer’s manuals.
Departures from the manufacturer’s usage are noted here; nonetheless, you should
use the manufacturer’s manuals for a detailed description of the instruction set and
addressing modes.

Where boldface type is used here, it distinguishes Forth words (such as register
names) from Atmel names. Usually these are the same; the name ADC can be used as
a Forth word and as Atmel’s name. Where boldface is not used, the name refers to
Atmel’s usage or hardware issues that are not particular to SwiftX or Forth.

4.1 SwiftX Assembler Principles

Assembly routines are used to implement the Forth kernel, to perform direct I/O
operations when desired, and to optimize the performance of interrupt handlers
and other time-critical functions.

The SwiftX AVR cross compiler provides an assembler for the AVR processor. The
mnemonics for the AVR opcodes have been defined as Forth words which, when
executed, assemble the corresponding opcode at the next location in code space.

Most instructions use the manufacturer’s mnemonics, but postfix notation and
Forth’s data stack are used to specify operands. Words that specify registers,
addressing modes, memory references, literal values, etc. precede the mnemonic.

Some of the manufacturer’s mnemonics have been replaced by different names,
plus options to describe operations. The principal use of this strategy is in connec-
tion with conditional jumps. SwiftX constructs conditional jumps by using a condi-
tion code specifier followed by IF, UNTIL, or WHILE. Table 4 summarizes the
relationship between SwiftX condition codes used with one of these words and the
corresponding Atmel mnemonic.

References Assemblers in Forth, Forth Programmer’s Handbook, Sections 1.3 and 4.0
AVR Assembler 15

SwiftX AVR for the Arduino Prototyping Platform
4.2 Code Definitions

Code definitions normally have the following syntax:

CODE <name> <assembler instructions> RET END-CODE

For example:

CODE OVER (x1 x2 -- x1 x2 x1)
 TPUSH \ Push x2 onto stack
 2 S TL LDD 3 S TH LDD \ Fetch x1 to TOS
 RET END-CODE

Register usage on the AVR is described in Section 4.3. In this example, the macro
TPUSH pushes a copy of the top data stack item, which is kept in register pair XH:XL,
onto the stack, and the two LDD instructions put a copy of x1 there.

As an alternative to the normal RET, the phrase:

 WAIT JMP

…may be used before END-CODE to terminate a routine. It returns through the Swift-
OS multitasking executive, leaving the current task idle and passing control to the
next task.

You may name a code fragment or subroutine using the form:

LABEL <name> <assembler instructions> END-CODE

This creates a definition that returns the address of the next code space location, in
effect naming it. You may use such a location as the destination of a branch or call,
for example. The code fragments used as interrupt handlers are constructed in this
way, and the named locations are then passed to EXCEPTION, which connects the
code address to a specified exception vector.

The distinction between LABEL and CODE is:

• If you reference a CODE definition inside a colon definition, the cross compiler will
assemble a call to it; if you invoke it interpretively while connected to a target, it will
be executed.

• Reference to a LABEL under any circumstance will return the address of the labeled
code.

Within code definitions, the words defined in the following sections may be used to
construct machine instructions.

Glossary

CODE <name> (—)

Start a new assembler definition, name. If the definition is referenced inside a target
colon definition, it will be called; if the definition is referenced interpretively while
connected to a target, it will be executed.
16 AVR Assembler

SwiftX AVR for the Arduino Prototyping Platform
LABEL <name> (—)
Start an assembler code fragment, name. If name is referenced, either inside a defi-
nition or interpretively, the address of its code will be returned on the stack.

WAIT (— addr)
Return the address of the multitasker entry point that deactivates the current task.
Used as a code ending (instead of RET) at the end of code that initiates an I/O opera-
tion, where the interrupt that signals completion of the I/O will be used to wake up
the task.

END-CODE (—)
Terminate an assembler sequence started by CODE or LABEL.

References Assembler macros, Section 4.5
Interrupt handling, Section 3.3
SwiftOS multitasking executive, SwiftX Reference Manual, Section 5

4.3 Registers

The AVR’s registers are defined as constants for use by the SwiftX assembler, using
the published Atmel names. Certain registers are used in pairs, and those with spe-
cial functions in the Forth virtual machine are given special Forth names. They are
shown in Figure 3 and Table 1.

Figure 3. Register usage in AVR SwiftX

The names given to the registers designate either single registers (e.g., TH) or regis-
ter pairs (e.g., T or X). Only a subset of AVR instructions can access register pairs.
You may use either the Atmel names or the SwiftX names, although we recommend
that you use the SwiftX names when the register is being used in its SwiftX role (e.g.,

R0

R1

...

R25

R27 R26

R29 R28

R31 R30

General purpose registers
(scratch)

Top data stack item

Data stack pointer

Scratch pointer
AVR Assembler 17

SwiftX AVR for the Arduino Prototyping Platform
TH and TL when you are explicitly dealing with the top stack item).

Registers TH and TL contain the top data stack item. As an example of how these are
used, consider the definition for +:

CODE + (n1 n2 -- n3)
 S+ R0 LD S+ R1 LD \ Pop n1 into R0/R1
 R0 TL ADD R1 TH ADC \ Add n1 to n2
 RET END-CODE

The AVR’s processor stack pointer SPH:SPL is used for subroutine calls, functioning
as Forth’s return stack. Because it is implemented as a pair of I/O registers, it is
read by IN instructions, typically into register Z. For example:

CODE >R (x --) (R: -- x)
 TH PUSH TL PUSH\ Push TOS onto R
 TPOP RET END-CODE\ Pop TOS

…and:

CODE R@ (-- x) TPUSH \ Save TOS on stack
 SPH ZH IN SPL ZL IN \ Read R-stack pointer to Z
 1 Z TL LDD 2 Z TH LDD \ Get value
 RET END-CODE

Only registers 16–31 can be used with immediate data. Since the high-numbered
registers have assigned functions, R16 and up are often used as general-purpose
registers when literal data may be involved. For example, here’s the routine used to
initialize the Timer0 interrupt:

CODE /TIMER (--)
 3 R16 LDI R16 TCCR0 OUT \ Prescale select = CK / 64
 TIMSK R16 IN 2 R16 ORI \ Enable timer 0 overflow int
 R16 TIMSK OUT RET END-CODE

4.4 Instruction Syntax

This section describes instruction syntax in the SwiftX assembler, which differs
from the manufacturer’s primarily in the ordering of mnemonics and operands:
operands precede mnemonics, in the order <source> <destination>.

Table 1: Special register assignments

Register(s) Atmel name SwiftX name Description

R27:R26 X (XH:XL) T (TH:TL) Top data stack item

R29:R28 Y (YH:YL) S (SH:SL) Data stack pointer

R31:R30 Z (ZH:ZL) (None) Scratch pointer
18 AVR Assembler

SwiftX AVR for the Arduino Prototyping Platform
4.4.1 Mnemonics

The mnemonics of the various AVR opcodes have been defined as words which,
when executed, assemble the corresponding opcode at the next location in the pro-
gram space. As with other Forth words, the operands (e.g., register numbers or
names, ports, immediate data, and modifiers) must precede the mnemonic.

Most mnemonics require two addresses as operands: a source followed by a desti-
nation. These may be registers or other addressing modes. Thus:

TL R0 ADD

…adds the low order byte of the top stack item to the byte register R1. Similarly,

Z+ R0 LD

…moves the byte pointed to by the register pair Z to R0, incrementing Z after the
move.

4.4.2 Operands

The notation for specifying addressing modes differs from Atmel’s notation, in that
the mode specifiers are operands that precede the mnemonics. Note that the syntax
is consistently <source> <destination> <opcode>.

The pointer registers X (also known as T), Y (also known as S), and Z are referred to
by their single-letter names when they are being used as register pairs for indirect
or indexed addressing, but they must be addressed as byte operands (e.g., XL and
XH) when loading or storing them. Use the low-order register of a pair for ADIW and
SBIW instructions:

R24 R26 R28 R30
 XL YL ZL

Table 2: Addressing modes

Mode Example Description

Direct R0 TL ADD Add the byte in R0 to the byte in TL.

Immediate $98 R16 LDI Move 98H to R16.

Indirect S R0 LD Load the low-order byte of the second stack
item into R0.

Indirect
(post-increment)

S+ R0 LD Pop the low-order byte of the second stack
item into R0.

Indirect
(pre-decrement)

R0 -S ST Push R0 as one byte of the second stack
item.

Indexing 1 S R1 LDD Load the middle byte of the second stack
item into R1.

External R16 UDR OUT Output R16 to UART data register UDR.
AVR Assembler 19

SwiftX AVR for the Arduino Prototyping Platform
4.4.3 Error Checking

The SwiftX assembler checks operands for the following error conditions:

1. A register is required, but something other than a register is specified.
2. A bit number is not in the range 0 to 7.
3. The destination register of an immediate opcode is not within the range of registers

allowed (generally, R16–R31 for byte operations, and R24, R26, R28, R30 for word oper-
ations).

4. An immediate value is out of range.
5. An absolute address is out of range.
6. An I/O register is out of range.
7. A condition code for a structured transfer is missing or not allowed.
8. A relative branch destination is out of range.

If an error is detected, SwiftX will abort with the message, Illegal operand. If you
type L following such a message, SwiftX will open your linked editor (if it is not
already open) with the cursor positioned immediately after the opcode mnemonic
that produced the error.

References Use of L following compile-time errors, SwiftX Reference Manual, Section 2.4.1

4.5 Macros

The macros in Table 3 have been defined in order to simplify assembler coding for
the 16-bit virtual machine.

A 16-bit pointer register (X, Y, or Z) may be used as the source operand for LDI and
LDS or as the destination for STS. The assembler splits the immediate or memory
address operand and assembles two opcodes. For example:

$1234 Z LDI is equivalent to $12 ZH LDI $34 ZL LDI

4.6 Renamed Mnemonics

In most cases, SwiftX uses Atmel mnemonics and notation, though in postfix order.
However, a few of Atmel’s mnemonics have been replaced by different names, plus
options to describe operations. The principal use of this strategy is in connection
with conditional jumps. Table 4 summarizes these equivalencies; all SwiftX assem-
bler condition codes are presumed to be followed by IF, UNTIL, or WHILE. The word

Table 3: Simple macros

Command Action

TPUSH Push the top stack item (TOS) onto the data stack (equivalent to DUP).

TPOP Pop the top stack item (TOS) from the data stack (equivalent to DROP).
20 AVR Assembler

SwiftX AVR for the Arduino Prototyping Platform
NOT following a condition code inverts it.

4.7 Assembler Structures

In conventional assembly language programming, control structures (loops and
conditionals) are handled with explicit branches to labeled locations. This is con-
trary to principles of structured programming, and is less readable and maintain-
able than high-level language structures.

Forth assemblers in general, and SwiftX in particular, address this problem by pro-
viding a set of program-flow macros, listed in the glossary at the end of this section.
These macros provide for loops and conditional transfers in a structured manner,
and work like their high-level counterparts. However, whereas high-level Forth
structure words such as IF, WHILE, and UNTIL test the top of the stack, their assem-
bler counterparts test the processor condition codes.

The program structures supported in this assembler are:

BEGIN <code to be repeated> AGAIN
BEGIN <code to be repeated> <cc> UNTIL
BEGIN <code> <cc> WHILE <more code> REPEAT
<cc> IF <true case code> THEN
<cc> IF <true case code> ELSE <false case code> THEN

In the sequences above, cc represents condition codes, which are listed in Table 4
and in a glossary beginning on page 23. The combination of a condition code and a
structure word (UNTIL, WHILE, IF) assembles a conditional branch instruction BRcc,
where cc represents the condition code. The other components of the structures—
BEGIN, REPEAT, ELSE, and THEN—enable the assembler to provide an appropriate des-
tination address for the branch.

All conditional branches use the results of the previous operation that affected the
necessary condition bits. Thus:

0 TL ADIW 0= IF

Table 4: Conditional branch equivalencies

Atmel SwiftX Assembler Description

RJMP NEVER Unconditional branch.

BRCC CS Branch if carry clear.

BRNE 0= Branch if non-zero.

BRPL 0< Branch if not negative.

BRVC VS Branch if overflow clear.

BRGE S< Branch if greater than or equal to
(signed compare).

BRHC HS Branch if half-carry clear.

BRTC TS Branch if T flag clear.

BRID IS Branch if interrupts disabled.
AVR Assembler 21

SwiftX AVR for the Arduino Prototyping Platform
…executes the true branch of the IF structure if register pair TH:TL contains zero.

In high-level Forth words, control structures must be complete within a single defi-
nition. In CODE, this is relaxed: the limitation is that IF or WHILE cannot branch for-
ward more than 126 bytes in the object code. If it does, the assembler displays the
Range error message and terminates. Control structures that span routines are
not recommended—they make the source code harder to understand and harder to
modify.

Table 4 shows the instructions generated by a SwiftX conditional phrase. These
examples use IF. WHILE and UNTIL generate the same instructions, but satisfy the
branch destinations slightly differently. See the glossary below for details. Refer to
your processor manual for details about the condition bits.

Note that the standard Forth syntax for sequences such as 0= IF implies no branch
in the true case. Therefore, the combination of the condition code and branch
instruction assembled by IF, etc., branch on the opposite condition (i.e., ≠ 0 in this
case).

These constructs provide a level of logical control that is unusual in assembler-level
code. Although they may be intermeshed, care is necessary in stack management,
because REPEAT, UNTIL, AGAIN, ELSE, and THEN always use the addresses on the host’s
stack at compile time.

In the glossaries below, the stack notation cc refers to a condition code. Available
condition codes are listed in the glossary that begins on page 23.

Glossary Branch Macros

BEGIN (— addr)
Leave the current address addr on the stack. Doesn’t assemble anything.

AGAIN (addr —)
Assemble an unconditional branch to addr.

UNTIL (addr cc —)
Assemble a conditional branch to addr. UNTIL must be preceded by one of the con-
dition codes (see below).

WHILE (addr1 cc — addr2 addr1)
Assemble a conditional branch whose destination address is left empty, and leave
the address of the branch addr on the stack. A condition code (see below) must pre-
cede WHILE.

REPEAT (addr2 addr1 —)
Set the destination address of the branch that is at addr1 (presumably having been
left by WHILE) to point to the next location in code space, which is outside the loop.
Assemble an unconditional branch to the location addr2 (presumably left by a pre-
ceding BEGIN).

IF (cc — addr)
Assemble a conditional branch whose destination address is not given, and leave
the address of the branch on the stack. A condition code (see below) must precede
22 AVR Assembler

SwiftX AVR for the Arduino Prototyping Platform
IF.

ELSE (addr1 — addr2)
Set the destination address addr1 of the preceding IF to the next word, and assem-
ble an unconditional branch (with unspecified destination) whose address addr2 is
left on the stack.

THEN (addr —)
Set the destination address of a branch at addr (presumably left by IF or ELSE) to
point to the next location in code space. Doesn’t assemble anything.

Condition Codes

0= (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on non-zero.

0< (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on non-negative.

CS (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on carry clear.

HS (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on half-carry clear.

TS (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on T flag clear.

VS (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on overflow clear.

NEVER (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate an
unconditional branch.

NOT (cc1 — cc2)
Invert the condition code cc1 to give cc2.

4.8 Direct Transfers

In Forth, most transfers are performed using structures (such as those described
above) and code endings (described below). Good Forth programming style involves
many short, self-contained definitions (either code or high-level), without the labels,
arbitrary branching, and long code sequences that are characteristic of conventional
assembly language. The Forth approach is also consistent with principles of struc-
AVR Assembler 23

SwiftX AVR for the Arduino Prototyping Platform
tured programming, which favor small, simple modules with one entry point, one
exit point, and simple internal structures. However, there are times when direct
transfers are useful, particularly when compactness of the compiled code overrides
all other criteria. CALL, RCALL, JMP, and RJMP are available in the generic AVR assem-
bler, although the CALL and JMP opcodes aren’t implemented in all AVR microcon-
trollers. See your MCU manual for details.

To create a named label for a target location in the host dictionary, use the form:

LABEL <name>

…described in Section 4.2. Invoking name returns the address identified by the
label, which may be used as a destination for a JMP or a CALL.

For example, in the code for the serial XTL, we find this sequence:

LABEL (OUT) \ Output a character from R16
 BEGIN UDRE USR SBIS AGAIN \ Wait till port ready.
 R16 UDR OUT \ Output character
 RET END-CODE

This is invoked whenever the code needs to output one character, using:

(OUT) RCALL
24 AVR Assembler

SwiftX AVR for the Arduino Prototyping Platform
SECTION 5: DEMO APPLICATION

Keeping portability in mind, the simple Morse code “S.O.S.” application is struc-
tured in two layers. The lower layer supplies the hardware application programming
interface. The upper layer is the application itself.

5.1 About Morse Code

The material in this section is excerpted from the Morse code topic on Wikipedia.
The complete topic with all its technical details, illustrations, and references can be
found here:

Reference http://en.wikipedia.org/wiki/Morse_code

Morse code is a method for transmitting telegraphic information, using standard-
ized sequences of short and long elements to represent the letters, numerals, punc-
tuation and special characters of a message. The short and long elements can be
formed by sounds, marks, or pulses and are commonly known as “dots” and
“dashes” or “dits” and “dahs”.

International Morse code is composed of six elements:

1. short mark, dot or “dit” (·)
2. longer mark, dash or “dah” (-)
3. intra-character gap (between the dots and dashes within a character)
4. short gap (between letters)
5. medium gap (between words)
6. long gap (between sentences — about seven units of time)

These six elements serve as the basis for International Morse code and therefore
can be applied to the use of Morse code world-wide.

Morse code can be transmitted in a number of ways: originally as electrical pulses
along a telegraph wire, but also as an audio tone, a radio signal with short and long
tones, or as a mechanical or visual signal (e.g. a flashing light) using devices like an
Aldis lamp or a heliograph. Morse code is transmitted using just two states (on and
off) so it was an early form of a digital code. However, it is technically not binary, as
the pause lengths are required to decode the information.

The length of the dit determines the speed at which the message is sent, and is used
as the timing reference.

The speed of Morse code is typically specified in words per minute (WPM). A dah is
conventionally three times as long as a dit. The spacing between dits and dahs
within a character is the length of one dit; between letters in a word it is the length
of a dah (three dits); and between words it is seven dits. The “Paris” Morse code
standard defines the speed of transmission as the dot and dash timing needed to
send the word “Paris” a given number of times per minute. The word “Paris” is used
Demo Application 25

http://en.wikipedia.org/wiki/Morse_code

SwiftX AVR for the Arduino Prototyping Platform
because it is precisely 50 “dits” based on the textbook timing.

Under this standard, the time for one “dit” can be computed by the formula:

T = 1200 / W

Where: W is the desired speed in words-per-minute, and T is the duration of one dit
in milliseconds.

5.2 Driver Layer Development

Morse code can be transmitted in bursts of audio tone, continuous wave radio fre-
quency (CW RF), direct current over a wire, or light. In this application, we will use a
LED on the Arduino board to provide an “S.O.S.” beacon.

The LED driver layer needs to supply three basic functions:

• Turn the LED on

• Turn the LED off

• Hardware initialization

We will define these Forth words to supply those functions:

Glossary

+LED (--)
Turn the LED on.

-LED (--)
Turn the LED off.

/LED (--)
Perform any necessary hardware initialization for LED output.

As shown in the attached schematics, both Arduino boards have an on-board LED
connected to GPIO port B, bit[5]. We also see from the schematic that the LED is
active high. The default function and mode for each pin is GPIO, input. Therefore,
our initialization routine needs to set PB5 as an output with an initial state of logic
0:

CODE /LED (--) 5 DDRB SBI 5 PORTB CBI RET END-CODE

Turning the LED on and off is accomplished by setting PTF0 low and high, respec-
tively:

CODE +LED (--) 5 PORTB SBI RET END-CODE
CODE -LED (--) 5 PORTB CBI RET END-CODE

Note the use of CODE definitions to take advantage of the nice I/O bit manipulation
operators in the AVR instruction set.
26 Demo Application

SwiftX AVR for the Arduino Prototyping Platform
5.3 Application Layer Development

The Morse code “S.O.S.” application can be divided into sections:

• Timing functions

• Primary code elements (“dit” and “dah”)

• Character codes

• Message

5.3.1 Timing Functions

Recall from the discussion of Morse code in Section 5.1 that the speed of Morse
code transmission is typically specified in words per minute (WPM) and that the
timing for a dah is conventionally 3 times as long as a dit. The spacing between dits
and dahs within a character is the length of one dit; between letters in a word it is
the length of a dah (3 dits); and between words it is 7 dits.

Under the “Paris” standard, the time for one "dit" can be computed by the formula:

Tu = 1200 / W

Where: W is the desired speed in words-per-minute, and Tu is one dit-time in milli-
seconds.

So our basic timing and WPM setting functions might look like this:

CREATE Tu 120 ,

: WPM (n --) 1200 SWAP / Tu ! ;
: DELAY (n --) Tu @ * MS ;

Tu holds the current value of one "dit" time. The default value of 120 sets the initial
rate at 10 WPM as defined above.

WPM sets Tu based on the formula above.

DELAY pauses for n dit times using the standard SwiftX MS (millisecond delay) func-
tion.

5.3.2 Primary Code Elements

Using our LED API calls (+LED and -LED) along with DELAY timing defined above, we
can build the DIT and DAH code elements:

: DIT (--) +LED 1 DELAY -LED 1 DELAY ;
: DAH (--) +LED 3 DELAY -LED 1 DELAY ;

Note that the one-unit intra-character delay time trails each code element.
Demo Application 27

SwiftX AVR for the Arduino Prototyping Platform
5.3.3 Character Codes

Only the codes for letters “S” (dit-dit-dit) and “O” (dah-dah-dah) are required here.

: S (--) DIT DIT DIT 2 DELAY ;
: O (--) DAH DAH DAH 2 DELAY ;

Note the additional 2 DELAY at the end of each character to supply the total three-
unit inter-character delay time.

5.3.4 The Distress Signal

: SOS (--) S O S 4 DELAY ;

Again, note the 4 DELAY at the end, which results in gap that is seven units in dura-
tion.

5.4 Background Task Assignment

We finish by assigning the infinite loop SOS output to a background task using the
SwiftOS multitasker, available in all SwiftX implementations.

First, we define the task:

|U| |S| |R| BACKGROUND BEACON

This defines a background task named BEACON with initial user area size |U|, data
stack size |S|, and return stack size |R|. These contants (“size of U”, “size of S”,
and “size of R”) are defined for each SwiftX implementation. They define “full-size”
user and stack spaces. In applications tight for RAM, smaller values may be used as
needed.

Next, we define an initialization procedure that performs the hardware setup and
assigns the task’s behavior:

: /BEACON (--) /LED
 BEACON ACTIVATE BEGIN SOS AGAIN ;

Finally, the instantiation of the task and assignment of its behavior need to be
added to the main system start-up code:

BEACON BUILD
/BEACON

We now have a portable application that can sit on top of the LED API for just about
any target processor supported by SwiftX (not just these two Arduino boards).
28 Demo Application

�
�
�

�
�

�
�

�	

�

�

�

�
�

�

�

�

�

�

�
�

�

�
�

�

�
�

�

�

�

�
�

�

�
�
�
��

�
�

�
�
�

�
�
�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�
�
�

���

�

�

�
�
�
�
�

�

�
�
�
�
�

�

�
�

�
�

�
�

	
�
�
�
�
�
�

!�

�
	

�
�
�
�
�

�

!�
�
�

�
�
�
�

�
�

�

�
�
"

�

�

�

�

�

�
�
�
�

�
�

�

������ �
�

�

#������

�

�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�

�
�
�
�

�

�

�
�
�

�
�

�
�
$

�
 �

$

�
�

�

����

�	

�

�

�

�
�

�

�
�

�

�
�
�

%
&

�
�
�

%
&

���

��'�������

��'�������

'����

�
�

�(

�(

�
(

�
(

�
�

�

��(

��(

��(

��(

�
�
�
�

�
�

�
(

�
(

�
(

�
(

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�
�

���%&

���%&

�
��

��)��)

��)��)

���

���

�
�

�

���

*�
�

	

+�

	

�
�

*�
�

	
�
+�

	
�

�
�

*�
�

	
�
+�

	
�

�
�

*�
�

	
�
+�

	
�

�

*�
�

	
�
+�

	
�

�
�

*�
�

	
�
+�

	
�
+

�
�

*

	

(
+�

'

�
�

*�
�

�
+�

'
�

�
�

*�
�

�+�

'
�

�
�

*

+�

'
�

�
�

*�
	

�
+�

'
�

�

*�	
�
+�

'
�

�
�

*�
��

�
+�

�
�

�
�

*�
��

�
+�

�
�

�
�

*�
�
+�

�

�
�

*�
�
+�

�
�

�

*��
�
�
+�

�
�

*��
�
�
+�

�
�

�

*�
,
�

+�
�

�
�

*�
,
�

+�
�

�
�

�
�

�
�

�
	

	
�

�
�
	

	
�
�

�
�

�
#

�
�

,
�
�
�
�

�

,
�
�
�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

-
�	

�

�
�

�
�

�

�	

�

� � � �
 � � �

��
�

� � � �
 � � �

��
%

� � � �
 �

�
�

	
�

�
	

�
�
	

�

�
�

�
,

�
,

�
�

�
�

�
�

�
�

����

�.�
�.�

�.�
�.�

,
�

�
�

�

�

�
�

�

�	
�

�
�

/

�

��
�

�
$

�
��

�	
�

����
�

�
�

�
�
�

	
�

#
�

	
�

�

��

� �
�

$
�
�

�

�

$
�
'

��

	
�

*�
	

��
�
�
0�

	
�
'
+�

	

�

*�
	

��
�
�
�
+�

	
�

�
�

*��
�
�
0�	

�
�
0	

�
(
�
+�

	
�

�
�

*�
	

�
�
0�

	
��

�
�
+�

	
�

�
�

*�
��

�
0�

	
��

�
�
�
+�

	
�

*�
	

��
�

+�

'

�
�

*�
�
0�

	
��

�
�
+�

'
�

�
�

*�
�

�
0�

�

�

0�
	

��
�
�
+�

'
�

�
�

*�
�

�0�
�

�0�

	
��

�
�
+�

'
�

�
�

*

	

�
(
0�

	
��

�
�
+�

'
�

�

*

0�

	
��

�
�
+�

'
�

�
�

*	
�

0%

�
'
0�

��
�
0�

�
0��

�
�
+�

�
�

�
�

*�
�

0�

��

0��

�
�
+�

�
�

�
�

*,
	

(
0�

��
�
0�

	
��

�
�
�
+�

�

�
�

*��
�

0�

��
�
+�

�
�

�
�

*�
,
�

�
0��

�
�
+�

�
�

�

*�
,
�

�
0�

��
�
0��

�
�
+�

�
�

�

*�
��

�
0��

�
�
+�

�
�

�

*�
	

�
'
0��

�
�
+�

�
�

�

�
�

�
�

�
	

	
�

�
�
	

	
�
�

$
�
	

	
�
�

,
�
�
�
�

�

,
�
�
�
�
*�

	
�
+

�

�
�

�
�
*�

	
�
0�

�
+

�
�

$
�

�
�

�
�

$
��

�
�

�
,
�

$
	

�
�

�
�

�

�
�

�
�

�
�

*�
	

��
�
�
+�

'
�

�
�

*�
	

��
�
�
0�

	
�
�
0�

	
�
	

+�
'
�

�
�

	

�
�

�
�

�

�	

�
�

�
�

�
�

�
�
$

'
�

�
�

-�

-�

�
�

�
�

�
$

�
�

��

�
�
�

�

�
�
 �

�

�
�

��
����

��
���'

�
�

�
�

�
	 �

�

�
�
�

�� ���� � �

���'

�� ���	

�

����

	
�

	
�

�
�

�
�

�
� �

�
�

�
�
'

�
�

�
�

�
	

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
'

�
�

�
�

�
	

�

�
�

�
�

	
�

�
�

��

1�

��

1�

� �
��

��
��

	��	��

	�	��

��
�

�
�

�

�
	

0#
'

�

�
$

�

�
�

�
�

��

�

�

�

�

�
�

�

�
�

�
#

�
�

�
#

�
�

�
�

�
�

�

�

�
��

�
��

�
��

�
�
�

,
�

�
�
�

,
�

�
�
�
,
�

�
�
�
,
�

	

(

�
�

�
��

�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�

�
�

�

�

���

�
�
�
�
2
	

�
�

	
�

�

$

'
�
	

	

$

'
�
	

	

$

'
�
	

	

,
�
�
�
�

,
�
�
�
�

,
�
�
�
�

,
�
�
�
�

�
$

	
�
�

�
�

�
�

�
�

�

�
�

�

�
�

�
�
�

�
�

�
�

�
�

��

	

(
�

$

%

��
�
� $���

$
�

�
�

,
$

'

,
�
�

,
�
�

,
�
�

,
�
�

�
,
�
�
�

�
,
�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
�

��
�

��
�

��
�

��
�

��

��
�

��
�

��
�

��
�

,
�
�
�

�

�

$
'

� � � � �
 � �

� � �
�

�
�

�
�

�
�

�
34

�
5�

6
77$

�
�

7�
8
98

38
�
:
8
7�

8
;
5<

�

$

'
7=

6
6
>7�

�

�
�

�
8
98

38
�
:
8
7�

8
;
5<

�
;
7�

�
�
7�

�
�

�
��

�
�

7?�

7�

?7�
�

�
7?�

��
%

7�
�
�
7#

�
$

�
�

?!7�

34
�
5�

6
7�

�

	

�
�
��

7�

�
�
7�

�
%

�
�

7�
�
�

�
�
�

�
��

@7�

,
�
�

�

7�

�
7��

�
�
��

�
@

�
34

�
5�

6
7"

A
B
7"

A
C
8
7:

D
A
�
<
8
;
7>6

7;
)
8
:
595:

A
>56

�
;
7A

�
4
7)

36
4
�
:
>74

8
;
:
35)

>56
�
;
7A

>7A
�
B
7>5"

8
@7E

5>D
6
�
>7�

6
>5:

8
!7�

D
8
7	

�
;
>6

"
8
37"

�
;
>7�

6
>

�
�

�
�
�

�
��

�
7�

�
�

�
$

	
�

@7��

	
�
$

�
��

�
7'

$
�
7�

�
�
7�

��
��

�
�

7�
�

@7�
�

�
7��

�
�
��

�
7�

�
�

�
�
�

�
��

7�

#
7�

�
�

	
%

�
�

�
�
'
��

��
�
7�

�
7#

��
�

�

7#

�
�

7�
7�

�
�

�
�	

$
�
�
�

7�
$

�
�
�

�

38
FB

76
�
7>D

8
7A

=
;
8
�
:
8
76

37:
D
A
3A

:
>8

35;
>5:

;
76

97A
�
B
798

A
>�

38
;
76

375�
;
>3�

:
>56

�
;
7"

A
3C

8
4
7?38

;
8
3G

8
4
?76

37?�
�
4
8
95�

8
4
!?7�

34
�
5�

6
738

;
8
3G

8
;

>D
8
;
8
796

379�
>�

38
74

8
95�

5>56
�
7A

�
4
7;

D
A
FF7D

A
G
8
7�

6
738

;
)
6
�
;
5=

5F5>B
7E

D
A
>;

6
8
G
8
3796

37:
6
�
9F5:

>;
76

375�
:
6
"

)
A
>5=

5F5>58
;
7A

35;
5�

<
7936

"
79�

>�
38

7:
D
A
�
<
8
;
7>6

7>D
8
"

!
�
D
8
7)

36
4
�
:
>75�

96
3"

A
>56

�
76

�
7>D

8
7�

8
=
7

5>8
76

37�
A
>8

35A
F;

75;
7;

�
=
H8

:
>7>6

7:
D
A
�
<
8
7E

5>D
6
�
>7�

6
>5:

8
!7�

6
7�

6
>795�

A
F5&

8
7A

74
8
;
5<

�
7E

5>D
7>D

5;
75�

96
3"

A
>56

�
!7

	Section 1: Overview
	1.1 About SwiftX
	1.2 Evaluation Boards

	Section 2: Arduino Platform
	2.1 About Arduino
	2.1.1 What is Arduino?
	2.1.2 Why Arduino?

	2.2 Arduino Uno
	2.2.1 Uno Board Overview
	2.2.2 Uno Board Features

	2.3 Arduino Diecimila
	2.3.1 Diecimila Board Overview
	2.3.2 Diecimila Board Features

	2.4 Arduino Board Documentation

	Section 3: Implementation Issues
	3.1 Implementation Strategy
	3.1.1 Execution Model
	3.1.2 Code Optimization
	3.1.3 Data Format and Memory Access
	3.1.4 Stack Implementation and Rules of Use
	3.1.5 Multitasker Implementation

	3.2 I/O Registers
	3.3 Interrupt Handling
	3.4 Timers
	3.5 Serial Channel

	Section 4: SwiftX AVR Assembler
	4.1 SwiftX Assembler Principles
	4.2 Code Definitions
	4.3 Registers
	4.4 Instruction Syntax
	4.4.1 Mnemonics
	4.4.2 Operands
	4.4.3 Error Checking

	4.5 Macros
	4.6 Renamed Mnemonics
	4.7 Assembler Structures
	4.8 Direct Transfers

	Section 5: Demo Application
	5.1 About Morse Code
	5.2 Driver Layer Development
	5.3 Application Layer Development
	5.3.1 Timing Functions
	5.3.2 Primary Code Elements
	5.3.3 Character Codes
	5.3.4 The Distress Signal

	5.4 Background Task Assignment

