CamelForth: CamelForth/MSP430

CamelForth

CamelForth/MSP430
Version 0.2 - 9 January 2009

This is an ALPHA TEST version of CamelForth/430, an ANSI Standard* Forth for
the Texas Instruments MSP430 family of microprocessors. This means that I
have tested the bulk of this code for correct functioning, but you may still
discover bugs. I'd appreciate hearing of any such via the contact form on this
web site.

Download CamelForth/MSP430

System Requirements

As distributed, CamelForth/430 will assemble to run on the New Micros Tini430
board, which uses the MSP430F1611 processor. It assumes an 8 MHz crystal for
XT2, and USARTO at 9600 baud (8,N,1) for terminal I/0.

CamelForth should be usable with any MSP430 device having at least 512 bytes
of RAM, 8K of ROM, and one USART.

CamelForth/430 is written to be assembled with the IAR Systems MSP430
Workbench "Kickstart", which can be downloaded from the TI web page.
Download MSP430 Workbench

Note that the files deps430.s43 and hilvl430.s43 are INCLUDEd from the
core430.s43 source file; they are not linked separately. The Workbench project
should contain only the files vecs430f1611.s43, init430f1611.s43, and
core430.s43. You will also need to use the provided linker control file, and not
the default provided by IAR.

Building CamelForth using the IAR Workbench

I assume that you have already installed the IAR MSP430 Workbench.

1. Create a new working directory. For this example, "cf430".

2. Extract the files from camel430-0.2.zip into the new directory.

3. Launch the MSP430 Workbench. In the Embedded Workbench Startup
window, click "Create new project in current workspace."

4. In the Create New Project window, select the "asm" template (double-
click "asm" and then click the "asm" that appears, then click OK).

5. In the Save As window, you will need to specify a directory and a Project
file name. Navigate to the directory you created in step 1. For "File
name:" you can type whatever you want -- for this example, "430forth".
Click Save.

6. In the Workspace window, click on the Project name (e.g. "430forth") to
select it. Then on the menu bar click Project, Add Files. In the Add Files
window select core430.s43, init430f1611.s43, and vecs430f1611.s43,
then click Open. Do NOT add deps430.s43, hilvl430.s43 -- these are
included from core430.

7. On the menu bar, click Project, Options. Select "General Options", then
the "Target" tab. Under "Device" select the MSP430F1611. (Click the
selection button to the right of the current device, then select
MSP430x1xx Family, then MSP430F1611.) Click "OK".

8. In the Options window, select "Linker", then the "Config" tab. Under

http://www.camelforth.com/page.php?8

12/5/09 9:33 PM

Main Menu
Home
Forum
Downloads
Documentation
1802
6809
8051
8052/C8051F
8086

P MSP430
Z80
Links
Members
Contact Us

Quick Downloads
8051

8086

Z80

6809

MSP430
8052/C8051F

Contributed:
1802

8051

MSP430 (ez430-
RF2500T) NEW!

Offsite downloads:
Z180

Z80, ZNEO, Z180,
Z380/Z2382, and eZ80
Acclaim!

Links
navigator
view links frontpage

Recent Additions
Forth 200x Standard
A new Forth standardization
effort, now underway.
Meets annually.
EuroForth Conference
The European Forth
Conference -- apparently
the only annual Forth
conference still happening.
Held each autumn in

various European countries.
Some nroceedinas are

Page 1 of 4

http://www.camelforth.com/download.php?view.12
http://www.newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=Tini430
http://focus.ti.com/docs/toolsw/folders/print/iar-kickstart.html
http://www.camelforth.com/index.php
http://www.camelforth.com/e107_plugins/forum/forum.php
http://www.camelforth.com/download.php
http://www.camelforth.com/page.php?3
http://www.camelforth.com/page.php?9
http://www.camelforth.com/page.php?6
http://www.camelforth.com/page.php?4
http://www.camelforth.com/page.php?10
http://www.camelforth.com/page.php?7
http://www.camelforth.com/page.php?8
http://www.camelforth.com/page.php?5
http://www.camelforth.com/e107_plugins/links_page/links.php
http://www.camelforth.com/user.php
http://www.camelforth.com/contact.php
http://www.camelforth.com/download.php?view.1
http://www.camelforth.com/download.php?view.5
http://www.camelforth.com/download.php?view.6
http://www.camelforth.com/download.php?view.4
http://www.camelforth.com/download.php?view.12
http://www.camelforth.com/download.php?view.16
http://www.camelforth.com/download.php?view.14
http://www.camelforth.com/download.php?view.2
http://www.camelforth.com/download.php?view.17
http://www.seanet.com/~karllunt/camel80.htm
http://www.hytherion.com/beattidp/comput/z80forth.htm
http://www.camelforth.com/e107_plugins/links_page/links.php
http://www.forth200x.org/
http://www.complang.tuwien.ac.at/anton/euroforth/
http://www.camelforth.com/page.php?8#

CamelForth: CamelForth/MSP430

"Linker command file," select the "Override default" box. Click the
selection button to the right of the current file, browse to the project
directory you created in step 1, select Ink430F1611.xcl, and click Open.
Click OK.

9. In the Workspace window, right-click on "asm.s43", then click Remove.
Confirm the removal.

10. On the menu bar, click Project, Make. You will need to specify a
Workspace file name. This can be whatever you want...you can use
"430forth" again. Click Save. Then the project will be built. You should
see number of errors and number of warnings both "0".

11. If you have a Tini430 board connected with a parallel JTAG cable, you
should be able to now click Project, Debug to download CamelForth to
the target board.

Memory map

1000-10FFh: "information" Flash ROM (not currently used)
1100-12FFh: CamelForth RAM, 512 bytes (stacks, buffers, etc.)
1300-13FFh: RAMDICT - Data RAM for new variables, arrays, etc.
1400-38FFh: ROMDICT - Program RAM for new Forth definitions

4000-DFFFh: Program Flash ROM for new CamelForth definitions
EOOO-FFFFh: CamelForth kernel

The memory map is controlled by equates in the init430f1611.s43 assembler
source file, and statements in the Ink430F1611.xcl linker control file. There are
also #defines in the forth.h file that pertain specifically to Flash memory usage.

CamelForth/430 uses a split Program/Data model. New definitions are compiled
into the Program (Instruction) space, as indicated by the dictionary pointer
IHERE. New data structures (e.g., VARIABLES) are allocated in the Data space,
as indicated by HERE.

CamelForth/430 also features direct-to-Flash compilation. You can set the
Instruction Dictionary Pointer (IDP) to an address within Flash ROM,

HEX 4000 IDP !

and new definitions will be compiled into the ROM. There are some restrctions to
this, and at least one ANSI Forth violation (see below). If you reset IDP to use
Flash ROM, all the RAM after 1300h is available for data structures. (Note: future
releases will default to having the program dictionary in Flash ROM. It is located
in RAM now for testing.)

Development

There are TWO WAYS to write programs in CamelForth:

1. If you have CamelForth running on your MSP430 board, you can download
Forth code directly to CamelForth. This lets you type new words from the
keyboard, test them as they are defined, and re-define them to make changes.
Or you can edit an ASCII text file, and use a program such as Hyperterminal to
send this file over the serial port to your MSP430. It can take a few seconds to
compile each line, so be sure to leave plenty of delay after the line. Also be sure
that no line exceeds 80 characters.

2. You can add your code to the assembler source files. This requires you to
convert your Forth code to assembler code. To show how this is done, every
high-level Forth word in the file is shown with its equivalent Forth code in a
comment. Be especially careful with control structures (IF..ELSE..THEN,
BEGIN..UNTIL, DO..LOOP, and the like), and with the Forth word headers. For
this option it is recommended that you create a new .s43 assembler file, and
INCLUDE it at the end of core430.s43. This is necessary to preserve the
dictionary linking between your new definitions and the kernel definitions.

http://www.camelforth.com/page.php?8

12/5/09 9:33 PM

——ri— e m——— g e -

available on-line.

Latest Forum Posts
Posted by Jack

John wrote ...I'm running

IAR v4.11A and see no

co[more ...]

05 Dec : 13:24

Posted by John
Glad to see autostart for
CamelForth/430 being
dis[more ...]
05 Dec : 12:23

Posted by John
Jack wrote ...The main
reason | prefer C::B is
tha[more ...]

05 Dec : 12:20

Posted by Brad R
| think what I'd prefer to do
is what the C8051F C[more

]
5 Dec : 08:12

Posted by Jack
Been looking on how
things are done in other
house[more ...]
04 Dec : 11:40

Posted by Brad R
As a security measure I've
disabled the "public
up[more ...]
04 Dec : 06:14

Posted by Eric Smith
Since | prefer to use an
assembler that is Free
So[more ...]

04 Dec : 02:54

Posted by Jack
The main reason | prefer
C::Bis that I'm used to
[more ...]
02 Dec : 18:38

Posted by John
Jack wrote ...l tend to think
of Eclipse as an alt[more ...]
02 Dec : 16:17

Posted by Jack
| tend to think of Eclipse as
an alternative to C:[more

]
1 Dec : 20:24

Page 2 of 4

http://www.camelforth.com/e107_plugins/forum/forum_viewtopic.php?202.post
http://www.camelforth.com/e107_plugins/forum/forum_viewtopic.php?201.post
http://www.camelforth.com/e107_plugins/forum/forum_viewtopic.php?200.post
http://www.camelforth.com/e107_plugins/forum/forum_viewtopic.php?199.post
http://www.camelforth.com/e107_plugins/forum/forum_viewtopic.php?198.post
http://www.camelforth.com/e107_plugins/forum/forum_viewtopic.php?197.post
http://www.camelforth.com/e107_plugins/forum/forum_viewtopic.php?196.post
http://www.camelforth.com/e107_plugins/forum/forum_viewtopic.php?195.post
http://www.camelforth.com/e107_plugins/forum/forum_viewtopic.php?194.post
http://www.camelforth.com/e107_plugins/forum/forum_viewtopic.php?193.post

CamelForth: CamelForth/MSP430

Reassemble core430.s43, and download to the MSP430 board, then test. This is
a much slower process, and is best saved for the final stage when you have a
tested & debugged program that you want to put in PROM.

Future releases will have an "autostart" feature to let you download and compile
Forth code directly to nonvolatile Flash ROM, and then execute that code on a
CPU reset.

Direct-to-Flash Compilation

CamelForth/430 can compile source code directly into the MSP430's Flash
memory. No special action is required; merely set the Instruction Dictionary
Pointer to a location within Flash ROM. For example, to begin compiling code at
the start of Flash ROM on the MSP430F1611, type

HEX 4000 IDP !
To store data into Flash ROM, you can use the Forth words

I' (uadr --) store a 16-bit cell in Flash

IC! (c adr --) store an 8-bit byte in Flash
I, (u--) append a cell to the I dictionary
IC, (c --) append a byte to the I dictionary
D->I (src dst n --) copy from RAM to Flash

NOTE: When using IC, remember that the MSP430 requires that cell fetches and
stores occur at even addresses. Appending single bytes can cause the dictionary
pointer to become unaligned (odd address) and can cause subsequent data to
be read incorrectly.

These operators are "smart" in that they will work correctly with addresses in
either RAM or Flash ROM, and they will refuse to overwrite the CamelForth
kernel (locations EO00-FFFF). Remember, though, that a Flash location can be
written only one time. NOTE ESPECIALLY that writing a Flash location more than
once can violate the MSP430 specs and damage the chip.

D->1I is also "smart" in that it will attempt to use word writes, rather than byte
writes, to minimize the total number of Flash write cycles performed. It will
correctly handle even or odd source addresses, even or odd destination
addresses, and even or odd lengths.

To erase Flash ROM, use the Forth word
FLERASE (adr n --) erase a range of Flash memory

The stack effect of FLERASE is the same as that of ERASE, but the effects are
somewhat different:

1. Erased Flash will contain FFh bytes, not 00.

2. Main Flash (4000-DFFF) is always erased in 512-byte segments.

3. Information Flash (1000-10FF) is erased in 128-byte segments.

4. FLERASE will not operate below 1000h or above DFFFh.

5. Do not use FLERASE with RAM; it is NOT "smart" about RAM. If you attempt
to FLERASE an area of RAM, it will write the cell OFFFFh to every 512th location.

FLERASE will bascially loop, 512 bytes at a time, until 'n' is exceeded. This may
have unexpected results. For example:

HEX 4133 10 FLERASE will erase 4000-41FF.
HEX 4133 1FF FLERASE will also erase 4000-41FF.
HEX 4133 200 FLERASE will erase 4000-43FF.

To preserve your sanity, it is best to always use an 'adr' which is aligned to a
Flash segment, and an 'n' which is a multiple of 512 bytes (or 128 bytes if
erasing Information memory).

http://www.camelforth.com/page.php?8

12/5/09 9:33 PM

Welcome
Username:

Password:

I |
|Login |

¥ Remember me

[Signup]
[Forgot password?]
[Resend Activation Email

]

This site is powered by €107, which
is released under the terms of the
GNU GPL License.

Page 3 of 4

http://www.camelforth.com/signup.php
http://www.camelforth.com/fpw.php
http://www.camelforth.com/signup.php?resend
http://e107.org/
http://www.gnu.org/

CamelForth: CamelForth/MSP430 12/5/09 9:33 PM

CamelForth/430 supports the ANS Forth word MARKER, which automatically
erases Flash memory that you have used. If you put the phrase

MARKER name
where any "name" can be used

at the beginning of your code, CamelForth will align IDP to the next available
Flash segment, and will create a word "name" that will erase memory back to
the marked point. To be specific, "name" will

restore IDP, DP, and LATEST (the dictionary head) to the values they had before
MARKER was executed, thus "unlinking" all definitions following "name", and will
then erase all Flash used by the definitions

following "name". Note that the MARKER word "name" will also erase itself.

* Non-ANSI CREATE and DOES>

CREATE..DOES> will not work correctly in a direct-to-Flash environment,
because they require the Code Field of a defined word to be written twice. (The
first time when CREATE gives it the default action "return the parameter
address", and the second time when DOES> gives it a user-defined action.) To
address this problem, CamelForth provides <BUILDS to be used with DOES>.

<BUILDS is the same as CREATE, except that the newly defined word has no
action (its Code Field cell remains in the erased state). The word DOES> can
then write the Code Field cell with the desired action. NOTE that you should not
attempt to execute a word created with <BUILDS until you have performed a
DOES> for that word. (An erased Code Field will normally cause a processor
reset.)

Also, DOES> can only be used ONCE for a newly-defined word. This is normally
not a restriction, since Forth applications that "re-DOES>" a defined word are
extremely rare (typically, clever academic exercises). However, this limitation
also violates the ANSI specification.

You can use CREATE..DOES>, and use DOES> multiple times, when compiling to
RAM. This means that CamelForth/430 is only ANS compliant when compiling to
RAM!

For "flashable" applications, simply use <BUILDS..DOES> instead of

CREATE..DOES, and your programs should work. (Though they won't be ANSI
Standard.)

Licensing

CamelForth for the Texas Instruments MSP430 (c) 2009 Bradford J. Rodriguez.
This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

For a copy of the GNU General Public License, see http://www.gnu.org/licenses/.

Commercial inquiries should be directed to the author at 115 First St., #105,
Collingwood, Ontario L9Y 4W3 Canada or via the contact link on this web site.

http://www.camelforth.com/page.php?8 Page 4 of 4

http://www.gnu.org/licenses/

