
www.UltraTechnology.com

(Visit Chuck Moore's Website ColorForth.com to get the inventor's
thoughts on Forth.)

Thoughtful Programming and Forth
by Jeff Fox

Preface

Computers are amazing machines. They have an incredible potential. At their best they provide an
extension to our minds and our traditional media assisting us in storing and retrieving data, making
calculations and decisions, visualizing information, and communicating information between humans.
At their worse they introduce nightmarish complexity and problems into our lives. They account for
an entire industry that is vast and pervasive and which works in cooperation with strong media and
socio-economic forces to sell and promote computer use in our culture.

The technological fads and media hyped product feeding frenzies that we know of as the modern
computer industry also have a dark side. The phenomenon known as the digital divide is the way that
technology is creating a strong social economic division in our culture that could influence
generations. Those with access to modern computers will have access to nearly unlimited information
and a world of training, experience and opportunity that the have-nots will never know. The strong
and disturbing evidence is that home computers, SAT test practice programs, and access to the internet
have become prerequisites to enrollment in a good college and getting a good job in the future. Those
without a way to get a foot up into the system will be forever kept out. One aspect of the digital divide

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

1 of 14 9/5/11 6:26 PM

is that computers themselves must be made to appear inconceivably complex and incomphrehensible
to the uninitiated.

The reality of the world we live in is that if 100 people represented the population of the world two of
them would own personal computers. Owning a personal computer is much like owning an
automobile and gives you bragging rights about the model and style that represents you. To the vast
majority of the people in the world just owning one puts you in an elite group of rich and affluent
people whether it is a clunker or the top of the line luxury model. Marketing of computer hardware
and software is pervasive throughout the culture. Everyone would like the most beautiful, expensive,
fastest and highest quality model in an ideal world.

Part of modern culture seems to be that people like to pretend, perhaps even to themselves, that they
are so rich and important that money is of no object to them. If they can say that quality for value is
not important to them because they only want the top quality most expensive option they get higher
social status. Many people are therefore very arrogant about how wasteful they are with their
computer. They are very proud of it and will tell you how they got the latest upgrades that they really
didn't need but since it is all really cheap these days anyway etc. They will say that they tried the latest
most wasteful new software and had to go out and buy a faster computer but didn't care because they
are cheap. 98% of the people in the world think computers are too expensive to buy and most of the
people who buy them don't really believe they are so cheap that no one cares about that. If you are
talking about most of the limited resources in our culture it is not fashionable to brag about
conspicuous consumption, but computers seem to thought of as an unlimited resource because of
marketing.

I was first exposed to the difference between programming and computer marketing almost thirty five
years ago. If you have been a programmer perhaps you have been there too. Your manager tells you,
"This program you have written is too efficient. You don't understand the big picture. The client is
spending $100,000 a year now to do this manually. Based on the runtime of the program in this form
this program would accumulate only $5,000 in fees for an entire year. The client is now spending
$100,000 and will be happy to have it done for $50,000. Go back and rewrite this program so that it
uses ten times as much computer time so that we can charge this client ten times as much. This is a
business and the bottom line is making money not writing efficient programs."

The nature of business management in the US is such that managers work their way up through the
corporate structure by showing that they can manage larger and larger budgets. If you show an
aspiring manager a way to reduce their budget they will know that they will be expected to live with
that reduced budget again next year by a maybe not so understanding level of management above
them. They also know that the one of their peers with the largest budget will most likely be the one
promoted up to the next level where the budgets to be managed are even bigger. These pressures lead
middle managers to pad their budgets and this is one of the driving factors in the computer industry.

IBM exploited this vacuum for years with managers being promoted for pouring money into
mainframe accounts with constant upgrades of machines and operating systems to address a constant
list of bugs. When I worked for Bank of America in San Francisco one of my managers maintained
more mainframe accounts for employees who had quit than he had for employees who were still
working for him. This allowed him to inflate his budget by about 20 phantom employees times $1000

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

2 of 14 9/5/11 6:26 PM

a month to IBM for their mainframe computer accounts. I had three accounts and they were all still
active three years after I had left the bank. My manager had given IBM $108,000 for my computer
use after I was no longer an employee of the bank. Multiply that times twenty employees each for four
thousand managers and you get the picture at the bank at the time.

As time moved on it became easier to get promotions in large companies for wasting money on
Personal Computers. When I was a consultant to Pacific Bell I saw countless examples of managers
spending hundreds of thousands of customers dollars on inflated budgets for computing systems to
work their way up the corporate budget ladder. Managers were looking for packages that came in the
largest boxes, with the most diskettes and with the largest pricetags then they would buy hundreds or
thousands of copies that were not needed for any conceivable reason. One example were the 3270
terminals. They had many employees who used IBM 3270 terminals to talk to their mainframes. They
replaced them with PC running 3270 emulation programs. This allowed them to continue to spend
thousands of dollars per machine every year for needless hardware and software upgrades even
though all of these users only ever ran one piece of software, 3270 emulation.

Whether you are talking about corporate America being marketed products that are intentionally
puffed up for marketing purposes or individuals being marketed new computer hardware and software
products based on style, status, and hype it is hard to deny that what sells are big boxes and big
programs with lists of features that far exceed anything related to productive work. There is
considerable concern both in the industry and by consumers about the diminishing returns for our
continued investment as users in this kind of software.

The marketers tell us that if cars were like computers the cars we would be buying today would be
absurdly cheap and absurdly fast, but it just isn't so. I got my first personal computer for about $1000
in 1975. That is still what they cost. The graphics are better. The computer is bigger and faster, and
doing more complex things, but that is what you would expect after 25 years of progress. My first
machine ran at about one hundred thousand instructions per second and my current machine runs at
one hundred million, 1000x faster. My first machine was so slow that it would take several seconds to
boot up and would sometimes just go away while executing system code on badly written programs
and I could not type for up to twenty seconds. My current PC is 1000 times faster, but the programs
seem to be 1000 times bigger and slower because it now takes about a minute to boot up and it still
goes away for about twenty seconds sometimes while the OS and GUI do who knows what sometimes
and appears dead and will not accept a keystroke for that period of time.

In this world of quickly expanding computer hardware and quickly expand computer software there
seem to be very few people concerned with making computers efficient or getting the most value out
of the computers we have, or the most productivity out of the programmers. It is more fashionable to
claim that everyone (who is important) is rich and doesn't care about things like efficiency. If a
program is inefficient they can always just go out and buy a more expensive computer to make up for
any amount of waste.

In this world there are few people working on making computers simple to understand, simple to
build, and simple to program. There are few people making programs that are easy to understand, easy
to maintain, efficient and beautiful. One of those people is Charles Moore the inventor of the
computer language Forth. Chuck Moore describes himself as a professional who gets personal

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

3 of 14 9/5/11 6:26 PM

satisfaction out of seeing a job done well. He enjoys designing computers and writing very efficient
software. He has been working for nearly thirty years to come up with better software and nearly
twenty years to come up with better computer hardware. His latest work involves unusually small
computers both in hardware and software.

His ideas are very synergistic as both his hardware and software are as much as 1000 times smaller
than conventional hardware and software designs. However many of his ideas about software design
and programming style are not limited to his tiny machines. While it is difficult to map bloated
software techniques to tiny machines it is easy to map his tight tiny software techniques to huge
machines. There will always be problems bigger than our machines and there will always be people
who want to get the most out of their hardware, their software, and their own productivity.

Chuck's approach to VLSI CAD is a good example of the application of his style of programming to a
conventional computer. The approach and the design of the code used the tiny approach to get the
most productivity from the programmer and the highest performance from the software on a
conventional Intel based PC. Instead of purchasing packages of tens of megabytes of other people's
code for hundreds of thousands of dollars Chuck wrote his own code in a matter of months to make it
faster, more powerful and more bug free. He does the job more quickly with thousands of times less
code. The size and performance of the program are quite remarkable and the methodology behind its
design and construction involve more than a specification of the features of his language. It involves
understanding how that language was intended by used by its inventor.

Chuck has moved most of this Forth language into the hardware on his computers leaving so little for
his software to do that it is very difficult for people to see how his software could possibly be so
small. He has refined his approach to his language until is is difficult for people who have been
extending it for twenty years to see all he has done with so little code.

There are aspects of his early experiments with CAD that have led to great confusion about his
software style. It has focused many people's attention on the number of keys on his keyboard or the
size or number of characters in his fonts or the hue of the colors that he selects in CAD, the names he
used for opcode and a long list of other distractions.

Introduction

Having spent the last ten years working with Chuck Moore on his custom VLSI Forth chip
development I have greatly changed my ideas about Forth. I have moved on from the concepts that I
first learned about Forth twenty some years ago and studied what Chuck has done with Forth in the
last fifteen years. I looked over his shoulder a lot and asked him a lot of questions.

When the Forth community first began work on the ANS Forth standard the effort involved defining a
Forth specification that provided common ground for different Forth users. The ANS Forth standard
as I think Chuck would say was designed to cover almost all the variations on what Chuck had
invented that everyone else was doing twenty years ago. There was never anything like it before, a
sort of meta-Forth definition. But Chuck said he worried that this formalizing of a definition of Forth
would result in a sort of crystallization of Forth. My concern was a different consequence of ANS
which was that a new style of Forth programming seems to have evolved. Traditional Forth was on a
real machine where there was a hierarchy from primitive hardware through abstracted code. There

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

4 of 14 9/5/11 6:26 PM

was always a sense of what were the simple fast primitive words were the best to get the most
efficient code where that was needed. In ANS there is no such sense that the 10,000th word in the
system is necessary any more high level or complex than the first since that is implementation
dependent. Even though such a hierarchy of complexity will normally exist in Forth common practice
in ANS Forth is to ignore this reality.

Chuck's advice regarding programming is often highly contextual. He will say people should not use
most standard OS services rather you should write the code yourself. He says this because if you build
your code on inefficient code you will have an efficient application and you will have to do more
work to get it to work. At the same time the primitive words in Forth are also a set of standard
services. On a real system you know the real tradeoffs regarding each of these services and can make
informed decisions regarding which words to use. On an abstracted model of Forth (ANS) you cannot
make these kinds of informed decisions. As a result ANS Forth programmers do with Forth what
Chuck would advise them to do with OS services, they try to rewrite them themselves. Instead of
using perfectly beautiful Forth words the way Chuck had intended them to be used 30 some years ago
they rewrite their own version. In this case Chuck would not advise them to rewrite it themselves. I
would often ask ANS programmers, "Why did you rewrite this word with all these pages of high level
code when almost exactly the same thing is available in highly optimized CODE and is 1000x faster?"
"Because that is the definition in the library in the system I normally use." was the answer.

Chuck and I were both convinced that this sort of abstracted approach to Forth might result in a new
style of using Forth that would in turn lead to the ultimate demise of the language. We focused our
efforts on building the fastest, simplest and cheapest hardware and fastest, simplest and cleanest
software as an alternate future for Forth. Chuck's ideas about Forth have evolved through four stages
in this time and I have generally been a stage behind.

After Chuck left Forth Inc. and began working on Forth in silicon he had the chance to start his
approach to Forth again with a clean slate. He was happy with many improvements but did not stop
experimenting after he did his cmForth. He moved on through the OK phase, the Machine Forth
phase, to his current Color Forth experiment.

This document is not intended to be a programming tutorial. It is not going to present a step by step
explanation of how one programs in the style that Chuck Moore is using but will present an overview
of what he is doing and why. There is an older document describing Forth and UltraTechnology

Table of Contents

Preface

Introduction

Table of Contents

Chapter 1

Context
Object Code

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

5 of 14 9/5/11 6:26 PM

Source Code
The First 10x
Extending Forth
Dispelling the User Illusion

Chapter 2

cmForth innovations
Virtual Machine Improvements
Portable Simple Native Code Compiler
Stacks, Words, Blocks
More Interpretation
Delayed Interpretation
ICE
Code Metrics
Avoid Abominations
Remove at Design Time

Chapter 3

Rethink the Problem
What to Throw Out
The Problem of Recursion
Focus
Attention
Example in Practice
Translation of Code Between Languages
Scaling
Wordlists
Addressing Constructs
Overflow and Underflow Errors
When to Inline Rather than Factor
Decision Trees
Conclusion

Chapter 1

Most of the Forth community have had little exposure to the evolution of Chuck's Forth for the last
fifteen years and have now become deeply entrenched in their habits from twenty years ago. Chuck
has lamented that no-one has published a book teaching people how to do Forth well. Chuck has seen
how other people use Forth and is generally not impressed. On this page I will discuss aspects of the
Forth language as I currently see them and lightly cover the subject of good Forth programming.

A Definition for Good in the Context of Forth Programming

What is good Forth? What makes one Forth program better than another? Well of course it depends on
context. The first thing in that context to me is the computer. Real programs run on real computers. By
that I mean real programs are implementations not specifications. You can specify the design of a

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

6 of 14 9/5/11 6:26 PM

program in a more or less portable form or you can specify the details of an actual implementation of
that program more explicitly. In either case I am talking about two aspects of the program, the source
and the object. I will discuss what I mean by good source and good object code.

Good object code is pretty straightforward. It is efficient in terms of system resources, it does not
consume resources excessively. The particular resources for a given system and a given program will
constitute a different balance of things like memory use, speed (time use), register use, cache use, I/O
device use etc. On many architectures there is the tradeoff between code size and speed. Up to the
point that cache overflows longer sequences of unfactored instructions will execute faster so many
compilers perform inlining of instructions. At the point that cache overflows things can slow down by
an order of magnitude and if the program expands to virtual memory paging from disk things will
slow down by orders of magnitude.

A little smaller, a little bigger, no big deal. A little faster, a little slower, no big deal. But when the
ratios become quite large you really need to pay attention to the use of resources. Since there are so
many layers that all multiply by one another in terms of efficiency if a system has ten layers that each
introduce a little more fat the final code may see a small fraction of the total CPU power available.
Programmers need to remember on most modern machines the CPU is much faster than Cache
memory, cache memory is much faster than onpage DRAM access and offpage DRAM access is
much slower than onpage. Regardless of other factors the way the program organizes data in memory
and how it is accessed can easily effect program speed by more than an order of magnitude. What is
marketed as a 100Mhz PC can easily be slowed to 10Mhz by slow memory access depending on the
program. It can be effectively reduced to almost nothing when the software goes away for 20 seconds
at a time unpredictable to do some system garbage collection or something. From the user's point of
view for those 20 seconds the machine has 0 user mips. Programs slow significantly when the
program or dataset is so large and access to it is so random that the worst case memory time happens a
lot. This and much worse is what happens as programs grow and spill out of cache and out of
available memory. To avoid this keep things small.

In some cases, such as scripting languages, fat is not an issue in terms of code efficiency. It remains an
issue in programmer efficiency however if that fat is a source of bugs just like lean code only moreso.
Excessively fat programs can easily be excessively buggy and unstable because the bugs will be hard
to find in all that fat. Also if a program is grossly inefficient at runtime it may not be as important as
the time spent writing it. There are many one-of type of applications where big and slow is not an
issue such as trivial scripts that only run once in a while. But for system software it is very important
that object code not be too inefficient because other things are built on top of it.

Of course some people would say, who cares, just buy a more expensive and faster computer to make
up the difference. Sometimes that makes sense. But for those who have been in those BIOSes and
system software and seen how bad it can get it seems like a shame to see people being forced to waste
90% of their investment in hardware or software because it means someone gets to charge more
money. In this sense the inefficiency fuels the planned obsolescence and forces people down the
expensive upgrade path. It's good for you if you own Intel or Microsoft but otherwise it is a concern
that has spawned the growth of PD software like Linux.

Good source code is a bit more difficult to define. It should be clear, easy to read and write, easy to

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

7 of 14 9/5/11 6:26 PM

debug. Again a little smaller, a little bigger no big deal. But computer languages are more different
than one another than human languages. When people see a language that is considerably more brief
or verbose than the computer language that they are used to their immediate reaction is usually I can't
read that, it's too little or it's too much. To compound this variation in point of view the visual layout
of the source is a big issue. The attention of reader is directed by code layout and this is also a big
factor on how readable the code will be. If the comments are in a language that you don't read they
don't help. If they are in a font that is too small to see they don't help. If they are printed in a color that
you can't see they don't help. Fortunately some vision problems are correctable but these are issues.

For some people the code layout must be pretty. This may be more imprint to some people than code
contents. I can't relate to that myself. To me the layout is simply there to direct the attention of the
reader. You are not trying to give them an esthetically pleasing experience so that they sigh when they
look at the page and don't bother to read the contents. If you follow code layout rules they are there
just to make the code clearer.

Chuck has switched to color in his latest Forth as a replacement for some of syntax and words that he
had not already eliminated. : ; [] LITERAL DECIMAL HEX \ () are some of the words that Chuck
has replaced with color change tokens. What I find most interesting about this is that when reading the
code a different part of your brain is engaged in seeing the organization of the code into words and
what the compiler and interpreter are going to do with the code than the the part of your brain that
decodes the meaning of the words. It seems to free the part of the brain reading words to focus on the
words more clearly because there are less distractions. Mostly Chuck has replaced some layout
information and some Forth words with Color. Besides making the Forth, small and fast, as Chuck
puts it, it also makes it colorful. My own experience with his Color Forth is that the result is easier to
read code than conventional Forth. But until I have tried using it myself I am not ready to make a final
judgment about that.

As I have said, prettiness is more important to some people and beauty is in the eye of the beholder.
Some peel think a system described on a couple of pages clearly is beautiful in itself just as a concise
equation in Physics. To another a listing that looks like a telephone directory is beautiful. People will
never agree about what looks best. Chuck has limited detail resolution in his vision and complains that
he can't see small fonts on the screen. He uses large fonts so he can see them and as a consequence he
only has short lines and small definitions. Other people have screens with 256 characters on a line and
some very long Forth definitions. Chuck complains that he can't see those small characters and that
the code should be factored into smaller pieces. (when the code is printed in a larger font Chuck has
also complained that he still couldn't read it because often it would begin with lots of words that had
been loaded from a user's libraries that are essential for the author to write anything but which can
only be described as extensions to Forth. If you know all of these persons extensions you might be
able to read the code.) This same author complains that he is color blind so Color Forth doesn't work
for him, even if he were not color blind the lack of layout and spelling rules would make it unreadable
to him. Of course color has been substituted for layout and some words in Color Forth. Chuck feels
color is good substitute for layout and some words, other people don't or haven't tried it.

As I say the layout issue is very personal, one person may have a couple of rules for layout and
someone else may have about as many rules for spelling and code layout as another person needs to
define the Forth system. My stance is that this is a matter of taste and I have my personal style and I

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

8 of 14 9/5/11 6:26 PM

can read either extreme of code. The code with pages of layout and spelling rules looks nice and if
you cross reference all the words that came from the user's private libraries the meaning is clear. I find
Chuck's Color Forth very easy to read too. I think it is easier for me to read but part of that is the same
reason that a 25K source is easier to read than a 25M source.

Size becomes a significant factor when it comes to being clear, easy to read, easy to write and
maintain etc. when the numbers ratios become quite large. Very small programs can be read quickly
but may include subtleties that elude easy perception on the surface. They may need to be read more
than once, or they may require more documentation than the code itself to be clear. If code is too
dense it will appear as nothing except meaningless cryptic symbols unless it is studied in great detail.
If code is too verbose it may appear as perfectly clear line by line but impossible to view because of
size. Yes, I can read source code, but no I can't read 25 megabytes of source and keep a picture of it
all clearly in my mind.

So my the definition I am use here for good source is something that conveys meaning to the
programmer effectively. I would say text, but it could include graphics in visual programming or
Color, Font styles etc. Just call it source to distinguish it from a formerly sourceless programming
environment like OK.

The First 10x in Forth

Forth had a surge of popularity in the seventies when FIG was distributing source and alternatives
were limited. Many users who discovered Forth at that time reported elation at the increase in their
productivity. They wrote programs faster, they debugged them faster, they maintained the more easily.
They reported that they could write much smaller and much faster programs that could do much more
than the ones they could write before. But when they reported that they had seen a 10x improvement
after switching from ... they were often dismissed by mainstream programmers as kooks because that
just seemed too good to be true to many people.

Those who were there know that the 10x is not all that remarkable and is really due a bunch of
numbers that when all multiplied together equals 10. No single thing gave these programmers a way
to be ten times more productive, instead it is all the factors multiply by one another.

The reasons have to do with the design of Forth. Stacks, words, blocks. Having the data stack for data
is simple and beautiful way to handle and pass data within a program. It introduced less bugs than
environments where programmers were working with lots of named variables or where they had to
juggle register use by hand in assembler. The separation of data and return stacks made factoring more
attractive. If you don't have to construct stack frames and move data in and out of function call's local
variable data space before you call something you have less overhead in calling a function and can
factor the code more extensively. "Factor, factor, factor. Factor definitions until most definitions
are one or two lines." is Chuck's advice.

Factoring was a key to debugging and maintaining the code. Well factored code is easy to debug and
maintain so the programmer is more effective with their time. Factoring also helps achieve the desired
balance between memory use and speed for a given machine since memory and processing power are
always finite.

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

9 of 14 9/5/11 6:26 PM

Programs were often performance limited by their interaction with mass storage as they are today.
Forth provided the BLOCK mechanism as a very simple form of virtual memory and close to the
metal mass storage access. By using BLOCKS where they could for data instead of more complex file
access programmers reported speeding up parts of their programs by 100x as well as making them
smaller and simpler.

Programmers often also reported that with Forth they could change anything. They didn't spend large
amounts of time caught in bugs they discovered in someone else's compiler, or in elaborate work
around schemes fighting with their software as they had before. If they wanted to change something
they just did and moved on to other productive work. They didn't get stuck like they often had before.

So armed with software that was smaller and simpler and easier than what they had before and with
an interactive modular develop and debug methodology that was more effective in the integrated
development environment they were happy. They were delighted to have seen improvements in their
productivity as programmers, their understanding and their freedom to do what they wanted to do.
They also turned off a lot of people who didn't want to believe that these people could actually have
all this stuff and made comments about how this was too good to be true so Forth must just be a
religion or cult or something.

So far everyone has said, yes, yes, we all know this ancient history of Forth. So far everyone has been
with me and mostly agreeing. So let's get to the more controversial stuff.

I begin with this history because it is my opinion that this is as far as most people got before they
headed back toward more conventional programming practices for various reasons. Little by little as
people added their favorite features from their favorite languages to their Forth and fought to
standardize the practice Forth became bigger and more complex. Bigger computers and growing
libraries of code made it possible to easily compile bigger and bigger Forths.

When Forths were small and simple they didn't take much source code. There weren't too many
words. Even on the slow systems of the old days a simple linked list of the name dictionary was
sufficient to search things quickly. As systems became larger and larger dictionaries became more
complex with wordlist trees and more complex methods of searching the more complex dictionaries
were introduced which introduced more complexity. In an environment of spiraling complexity in the
popular operating systems and GUI Forths expanded their interface to keep up. Now the glue between
Forth and the user interface could be hundreds of times bigger and more complex than a complete
Forth system in the old days.

Some of these Forth systems are advertised as having the best compilers that produce the fastest code.
What they don't tell you is that it may be true given that you are ready to accept a 90% or 99%
slowdown to move into that environment in the first place. If you choose to mount your Forth under a
GUI that takes 90% of the CPU power and leaves 10% for your Forth you may need that optimizing
compiler even on a fast computer. We have ported the chip simulators to various compilers. We
moved from a 16 bit DOS environment to a 32 bit Windows environment to get higher performance.
When we hit the OS wall we still wanted more speedup so we ported back to the 16 bit DOS
environment where we could get out from under the API load. We were able to speed up the program
1000x times by switching to a Forth that wasn't crippled by its Windows interface. What is interesting

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

10 of 14 9/5/11 6:26 PM

is that the program runs 1000x faster in a Windows environment by ditching the Windows Forth. We
have a strong incentive to replace the many megabytes of OS code with a couple of K of reasonable
code to get the same functionality. We prefer programs that are 1000x smaller and 1000x faster and
easier to write and maintain etc. If you are stuck in an excessively complex environment using Forth
gets you out from under some of the complexity facing other people, but only a tiny bit of it.

Complexity demands more complexity. When the source code gets really big and complex it begins to
demand things like version control utilities. Now between the huge files and time spent on version
control jobs become too big for one person so we split them up and assign a team. Now we need a
team of four. Now we need a more complex version control system with multiple user access. Now
programmers are spending more time with the complexities of version control and other people's bugs
that four isn't enough so we expand the team. Diminishing returns is the obvious result.

Many commercial and PD ANS Forth implementations Forth have become as complex as 'C', or
extensions to 'C'. The ANS standard went beyond the Forth core into extension libraries and it was
common practice to start with everything from the last twenty years. We had Forths that were
hundreds (or thousands) of times bigger and more complex than early Forths. They still supported the
factoring, and the interactive nature of Forth development so they still had some the factors that made
up that old 10x that we loved in the old days. But often now they were carrying megabytes of baggage
and users were dealing with programs as large and complex as many other languages. Forth had
changed so much that many systems require a full page or more of code to build a hello-world
program thanks to the use of dreadful APIs.

There were traditional Forth programmers and new Forth programmers who could use these
environments in a similar way to what they had once done but the common practice was to introduce
coding style, layout, and libraries plucked right out of other languages. Common practice became very
unForthlike and in particular beginners were often exposed to such examples in places like c.l.f.
between the debates about who could write the wierdest code to break the outer fringes of the ANS
Forth standard.

Chuck's view of programming, as I understand his description of it, is that there is a problem, a
programmer and his abstraction and the computer. Forth was there to let the picture be as simple as
possible and let the programmer map the solution to the problem to the computer.

Problem

Programmer with abstraction of problem

Computer

and this leading to a solution that looks like this.

User

Programmer's simple implementation by abstraction of the problem to the computer

Computer

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

11 of 14 9/5/11 6:26 PM

This was Chuck's original idea of Forth even though in the old days the normal picture was not
as complex and layered as it has become today. There were only a few layers between the
programmer and the computer in those days but that was the problem that Forth was suppose
to avoid. As the layers have become more numerous and deeper it has become even more
important to let Forth avoid that problem.

As each of the layers of abstraction were added to the model and common practice over the
years we were told that each would result in smaller, simpler programs because they would not
need their own copy of things we standardized on. Programmers were suppose to become more
productive and systems were suppose to become easier to understand and software would be
easier to write, there would be more code reuse etc. Like cooking a frog in a pot the water the
pot got hotter and hotter without people noticing who was coming to dinner until most of the
problems most people face were introduced this way. People complain now that they spend more
time looking for some code to reuse this way than they used to spend writing code when they
used to do that. Chuck on the other hand has learned how to be more productive and write
better code faster.

Chuck wants there to be nothing in his way. Chuck wants to make the computer simple and
easily comprehended so that no extra layers of abstraction are needed to get at it or the
problem. Chuck wants to make the solution simple so that it easy to write and efficient and has
no extra layers of unneeded fat. Chuck seeks a simple efficient abstraction of the actual problem
to the actual computer.

Chuck does not like the idea of a generalized OS providing a thick layer of abstraction that can
introduce unneeded code, unneeded complexity, and inefficiency. He will support the idea of the
abstraction of an OS but not one for everything. He and I would agree that in many
environments there are layer upon layer of abstraction, that introduce complexity.

The people coming into computing in these times are being taught that the picture below is
reality of a computer. They face enormous problems as a result. Almost no one gets to deal with
the simple reality of the problem or the computer but must deal with the complexity of a
thousand other people's abstractions at all times.

Problem

Programmers's abstractions of problem(s)

Programmers's abstractions in software (example: OO w/ late binding)

Programmers's abstractions of software reuse (general source libraries)

Programmers's abstractions of optimizing compilers knowing more than they

Programmers's abstractions of the computer GUI API

Programmers's abstractions of the computer OS Services

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

12 of 14 9/5/11 6:26 PM

Programmers's abstractions of the computer BIOS

Programmers's abstractions of the computer architecture ('C')

Computer (too complex for all but a few humans to grasp)

These are two very different points of view. Chuck has said that he would like to Dispel the User
Illusion. He means that the user has the illusion that all these layers of abstraction ARE the computer.
If they could see beyond the illusion to see only the simple problem and were only faced with
mapping it to a simple computer things stay simple and simple methods work. The majority of
problems are avoided this way.

Those who have been working on making Forth more mainstream, extending it, and merging it with
'C' libraries and popular APIs have applied Forth in a very different way than Chuck. What made
Forth popular twenty years ago was that Forth provided a simpler model and made programmers more
productive because they weren't trapped behind so many barriers introduced by other environments.
They could do things the way that made the most sense not the way they had to be done.

Chuck originally created Forth to avoid problems introduced by unneeded abstractions. There was the
abstraction of a Forth virtual machine and the expression of a solution in terms of that abstraction.
Chuck has spent years simplifying and improving the virtual machine and has moved that abstraction
into hardware to simplify both hardware and software design. He has a simpler virtual machine
model, implemented in hardware on his machines, and a simple Forth environment implemented on
top of it.

In many discussions that I read in c.l.f someone will ask how other people would accomplish such and
such. My first thought is usually something about how it couldn't be much simpler than what we do.
Acolor fontcolor ! to change the color of output in a numeric picture. What does it take? A store to
memory, a few nanoseconds is the answer when you keep things clean. Other people will post tens of
pages of detailed code that they need because of the bizarre behavior of particular layers of their layer
upon layer of abstraction introduced problem laden environments.

People have said that without all this abstraction the general purpose OS could not run on
innumerable combinations of cobbled together systems made of boards and cards and drivers from a
thousand different vendors. This may be true although only in isolated cases will it sort of run
anyway. It is also true that computers don't have to be built that way. They can be built with logical,
simple, inexpensive but high performance designs. The problem is that there is a cost to carrying
around drivers for thousands of computers when in reality you are always only using one set. Neither
hardware nor software have to be built that way. The problem is that the number of bugs and related
problems or the amount of waste of resources can cripple the computer and/or the programmer.

With so many people using Forth today as a sort of scripting environment on top of every generalized
service and abstraction as everyone else the common practice in Forth was no longer 10x compared to
other ways of solving those same problems. Meanwhile I have been watching Chuck very closely. He
seemed to still have a 10x up each sleeve that I saw very few other people using. He had a very

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

13 of 14 9/5/11 6:26 PM

different style of using Forth by continuing to explore in the direction he had been headed with Forth
originally while most of the Forth community was going in the opposite direction. What are these
other 10x factors?

Thoughtful Programming in Forth Chapter 2

Thoughtful Programming in Forth Chapter 3

Thoughtful Programming and Forth http://www.ultratechnology.com/forth.htm

14 of 14 9/5/11 6:26 PM

