Thoughtful Programming Chapter 3 http://www.ultratechnology.com/forth3.htm

1 of 12

Thoughtful Programming
Chapter 3
Third 10x

Now that brings us to the third 10x that Chuck has up his sleeve. This is the one that I found most
elusive. This is the stuff that he has not explicitly and repeatedly presented to the Forth community. It
is the stuff that is not obvious to everyone and which you have to dig in to find.

I can only assume that given the reaction that Chuck has received for the advice he has given on good
programming style that there is no point in his trying to go on to the advanced stuff. I know I have felt
very much that way over the years. When I have given presentations I always want to get into the
interesting stuff like how to implement a GUI in a couple of K or how to compile English language
rules into optimally efficient executable code structures or how to parallelize Forth programs easily
but we rarely get beyond reviewing the most basic and simple facts to get started. People seem to
begin by trying to map the ideas about the chip and Forth to other languages and environments and
architectures. As soon as we try to get going people say, "that's not possible" because they are
thinking 'C' or thinking RISC. We spend most of our time simply explaining that the starting point and
the Forth perspective and that our programs and our hardware match very well because the hardware
is 1000x smaller and cheaper and lower power consumption and we only need about 1/1000 the code
so it fits. It is simple and easy and productivity goes way up when you are not dealing with the 99.9%
fat and all the unneeded complexity.

The explanations often go like this: "I don't think it will work, you can't handle the ... problem." "We
don't encounter the ... problem in this approach we avoid it." "But you can't handle the ... problem."
"We don't encounter the ... problem when going in this direction." "How can you handle the ...
problem?" "That is what we are optimized and designed from the ground up to do." They have a very
hard time seeing that we face a different set of problems by simply avoiding so many unsolvable
problems.

If I post a fact in c.l.f such as the time for a specific processor to run a specific program so that people
can compare it to other processors it gets lost in the noise of all the people who post what they think
are corrected estimates based on their perspective. I have asked people why they would say in c.l.f
that I was not being honest in simply reporting results and ask them where they get the information
that they published. "Well it was just my estimate of how well F21 would run SpecFP in Unix." If one
has read what Chuck and I have said over the years they would know that either the person doesn't
have a clue or is trying to be an intentional deceptive as possible.

As I say the last 10x is the most elusive and the stuff that I don't think Chuck has explained repeatedly
although it has been put in front of us. Of course those who deny that it is there are never going to find
it even when it is pointed out to them. I imagine that when Forth Inc. trains people that they provide
them with some of this stuff. I have seen articles in FD about some of the techniques but it tends to get
lost in all the stuff about making Forth look more like other programming languages.

People try to distort and trivialize Chuck's by saying that he has removed everything that is needed
from Forth and they don't understand why. But Chuck didn't just remove things to remove things. He
removed things when he found a simpler way to solve the same problem that something was there

9/5/11 7:31 PM

Thoughtful Programming Chapter 3 http://www.ultratechnology.com/forth3.htm

2 of 12

solve. Often to solve a problem you have to add x-y-z. But then x-y-z introduces some more
complexity and as a result you have to then also add a-b-c and d-e-f. Now everyone gets used to x-y-z
and never considers any other way to solve the problem that x-y-z has solved for everyone for so
many years. They also never consider that a-b-c and d-e-f may also be viewed as problems that are
begging to be fixed by being removed. Otherwise as time goes by they become bigger and bigger
problems and as code is developed and added to the system they will lead to more complexity.

So Chuck will rethink the problem. He will find a different way to do x-y-z, or better yet to avoid the
problem that x-y-z solved. Now the x-y-z solution that everyone has been using for some problem is
no longer needed because something better is now available. It gets done because now he can also
remove a-b-c and d-e-f since they were just needed to support x-y-z. Things become simpler, clearer,
easier to use, easier to maintain, because unneeded fat has been removed and there are fewer
complications.

But people who have been doing x-y-z for twenty years are horrified at the prospect of not using it.
They cannot imagine Forth without it. None of their code would run without it. They would have to
rewrite code to not use x-y-z and writing code is hard for them. They also cannot imagine living
without a-b-c and d-e-f because they once again their old code is full of that and they never
considered doing it any other way.

Chuck doesn't just throw stuff out because he is compelled to minimize. He is compelled to
experiment and improve his code. He is not against throwing something out if he finds a way to be
more productive without it. He throws stuff because he can more productive by doing things in a
better way, cleaner, clearer, simpler. He does not think that he came up with the perfect language 30
years ago any more than he feels he has the perfect language now. He will always want to change and
improve what he is doing and he will always be looking for new ideas to make it better. He has been
on a clear path to make his language, Forth, smaller, simpler, easier, more powerful, faster, less buggy,
more maneuverable, etc. But each time he finds a way to improve something, through extensive
experimentation and pragmatic analysis many people have knee jerk reaction and say, "He took out
what? I can't live without that! What is he thinking?" But rather than ask what he is thinking and ask
him to explain why it is better to do Forth without x-y-z many people just say, "x-y-z is standard
practice by the average programmer and is part of the ANS standard. I don't want to even consider the
idea of removing x-y-z and I have interest in listening to the arguments. I will just post stuff for other
people about how I know that Chuck knows that x-y-z is really good and that he is just trying to
mislead people.

Look at Chuck's cmForth from a decade ago if you haven't. Why was SMUDGING removed? That's
non-standard! Why were immediate words removed? The answer is pretty obvious, he found a better
way to solve the same problems those things were there to solve, they were no longer needed and so
were just in the way. He as explained the reasoning but only a few of dozen people have followed his
logic in the design of cmForth. Fewer followed his transition to Machine Forth, it sort of slipped
through the cracks. Very few had any interest in OK, it wasn't Forth. OK as originally called 3/4 (three
Forth) because Chuck considered it subset of Forth at first but later decided that it wasn't Forth. By the
time he had moved to his Color Forth Most Forth enthusiasts had lost any interest in what Chuck was
doing. He wasn't doing ANS Forth like everyone else and some of the ANS Forth people even felt
that Chuck should not even use the term Forth any more because they were now the official owners of

9/5/11 7:31 PM

Thoughtful Programming Chapter 3 http://www.ultratechnology.com/forth3.htm

3of 12

the term and Chuck wasn't doing what they said was Forth.

The consequence of removing SMUDGING was that compiling was simpler and recursion became
automatic. As a result if Chuck wanted to redefine a word he would have to do something like

' MYWORD
: MYWORD (redef) ... COMPILE, ...

because MY WORD would be recursive call to the new MY WORD without SMUDGING of the
name until the definition is finished. But Chuck said he would just redefine it with a new name
anyway because that is simpler.

Chuck also added tail recursion a decade ago to his Forth. This only gave him a small speedup on
many words by converting the last call into a jump rather than compiling an EXIT in the ; A little
speedup here and a little speedup there and if you keep at it you see overall speedup. In the same way
a little fat and sloppiness here and a little fat there and soon you see a lot of fat accumulating.

By combining this tail recursion with the auto-recursion provided by removing SMUDGE from the
system this provided a looping construct. With this new simpler control flow mechanism Chuck didn't
need all those others. He had already tried replacing DO with FOR a decade ago and now able to
remove other looping constructions now that he had a simpler more efficient mechanism available.

When Chuck removes stuff from his Forth that other people use regularly in their Forths they wonder
how he can live without ... or ... and they don't seem realize that he didn't just take stuff out randomly
or for no reason. He took stuff out after many years of extensive experimentation and consideration
because either it was replaced by something that he considered better or he felt that it was just getting
in the way and no longer needed at all.

People assume that since Chuck has refined his Forth down to about a 1K object that this means he
has just stripped his Forth down to a 1K kernel that will boot like in the old days and that he is going
to compile a complete Forth system on top of the 1K before he starts an application. This is wrong.
The complete Forth system is 1K, and the reason for that is maximize Chuck's productivity. What
stops people from doing what they need to do to solve a problem is all the time spend solving all the
related sub-problems that pop up as a result of complex interconnections between components. To
maximize his productivity Chuck minimizes the number of these side problems that pop up. Keep it
simple, and don't get to where you are spending 90% or 99% or you time dealing with related
sub-problems. Avoid unsolvable problems, don't waste your time trying to solve them.

The approach that Chuck has taken is to focus on the task of solving a problem at hand. This means
facing the situation of a real program. Unless you are writing a book about programming theory if you
are dealing with a program it is the implementation of a program on a real machine. There are many
real issues that come up when one faces the situation at hand.

You have a problem, and are facing the implementation of a program in the real world. The approach
Chuck takes is to think through the problem well before you design the app. Part of that design
involves issues around the real platform on which the code will run. Face the problem, think about it
until you can picture the solution as about 1K of code or less. Until then you don't really understand it.

9/5/11 7:31 PM

Thoughtful Programming Chapter 3 http://www.ultratechnology.com/forth3.htm

4of 12

If you assume that the program is going to be megabytes of code it is very intimidating. The first thing
people look for is ways to crank out code and do as little coding as possible. They can't possibly write
a megabyte of real code themselves so they look for code in libraries. They paste in the code, and as
much as possible and then go from there. They see no alternative. There is just too much code to deal
with to study it in detail.

Sometimes the prospect that programmers are so unproductive and programs are so big will make
development costs look more attractive if spread accross multiple platforms. The idea is good and
sometimes it is better to only spend the minimum on coding and live with inefficient code that is
mostly portable to multiple platforms. That is the case when the programmers are crippled. This is not
the mindset that Chuck would advocate. Don't base all the plans on the restrictions imposed by
crippled programmers.

Once you have made it through the second 10x you are no longer facing the unpleasant prospect of
only being able to cobble together systems out of large collections of code written by lots of different
people. You have the option of doing the same job with a small amount of well thought out code. The
code is small so it easy to focus on making it efficient. The code is small so it is easy to focus on
making it match the real details of the platform on which it runs. Writing megabytes of code requires
that you paste in a lot of stuff without trying to understand too much detail, not very Forth-like.
Writing kilo sized applications exposes all levels of what is going on in the code and provides the
anything can be changed ability that accounted for the first 10x. The applications can be easily ported
and easily maintained and easily improved.

If an application deserves to be written it deserves to be written well. It deserves to be well thought
out and well implemented and perhaps even rewriten and reimplemented. Why? Because you will
learn! You will learn how to make it better and better. If you paste stuff in in an effort to avoid
thinking about the details do you really think your programming skills will improve? Do you really
think you reached perfection on the last try or that you cannot learn by rethinking the problem?

One of the factors for that third 10x is thoughtful or mindful programming. Pay attention to
what you are doing. Don't try to avoid thinking. Programming with thought really is more fun
and more rewarding than programming without thought. Now I realize that this bucks the trend in
modern software. Popular software keeps trying to dumb languages down further and further so that
programmers will be a commodity resource. Any programmer given the same libraries and same tools
will cobble together more or less the same mess. It is a good way to turn the programmers into
replaceable parts. But who wants to be a replaceable part?

So you really think through the problem. You study examples in libraries. You try different
experiments and models and compare features before you jump in and design code. Where do you
jump in? I think you think through the problem from top to bottom and from bottom to top a couple of
times. Then you look at the most important part the bottom. Most of the time in the profile will be
spent at the bottom. The code at the top may execute so infrequently that it doesn't matter whether it is
system style code or script style code. But the lowest level code, system level if Forth is the OS, or OS
and interface code otherwise spreads its fat over everything else. If anything deserves attention this is
where you start.

9/5/11 7:31 PM

Thoughtful Programming Chapter 3 http://www.ultratechnology.com/forth3.htm

5of 12

What routines execute most often? Where will the focus on efficiency be placed? This is the very
bottom of the design. At this stage I advise programmers to study the data structures that are used by
the program very carefully. There are some very important issues to the code design, data structures,
ordering, and scaling. How do you design the data structures? You examine what they contain, how
they will accessed, and how they will be manipulated. It is not that much different than planning the
data flow on the stack. If it is well planned out things are often there whenever they are needed
because of the planning at design time. When they are not in the right order you need stack or data
structure gymnastics to manipulate the data. It is very important that the fat be removed at this level.
The order in which data elements are accessed in the program should be designed so that as often as
possible in the most frequent routines when a data element is accessed the pointer is left pointing at
the next element with no overhead. No manipulation of the data pointers is needed when this is
applied in as many steps as possible in the problem. Access to the data on which other routines
depend can be sped up several times with something as simple as that. It is no different than carefully
planning the stack use so that no stack gymnastics are needed.

I can think of an example where the common practice was applied by an ANS Forth programmer who
chose to ignore all of the above advice and generate more portable code. Everything else was built on
top of the data structures. The program was a translation of a program from a library from 'C'. The
first step was to paste in 'C' like data structures. The second step was to make a copy of the data
structures in the 'C' program and access them in exactly the same order as in the 'C' program. Worst of
all the Forth implementation of 'C' structures used late binding so instead of pushing stuff from
runtime to compiletime and from compile time to design time this was pushing stuff from compile
time to runtime. The pasted code had not been examined closely. Even a novice Forth programmer
would have cleaned it up and sped it up a couple of times if thought had been applied. So it gave up
about 2x by not removing lots of visible fat, 2x for using the ordering in the 'C' program without
question, 50x for using late binding and 50x for using ANS Forth rather than Machine Forth. This was
far more than 10x when you combine the factors, more like 10,000x. I patched the code, ran
comparative benchmarks and discussed the issue again in staff meeting. We had been assured that any
code pasted in from FSL would get cleaned up appropriately for an embedded target.

Translating programs from one language to another can be done mechanically or by studying
the implementation in one language and improving on it in the next. Don't translate when you
have the opportunity to rewrite and improve. You can spend your time carefully designing code
or trying to debug and improve thoughtless code. Translating without thinking is not thoughtful
programming. Don't be afraid to think about the problem and what you are doing.

Another factor for getting that last 10x is scaling. Most Forth programmers don't take advantage of
the tricks of scaled arithmetic. Their programs deal only with full integers or floating point. Scaling is
important because it may allow you to take advantage of my favorite mathematical operation,
cancellation.

Scaling is something that takes planning, not unlike the ordering and arrangement of important data
structures. Precision and accumulated error are some of the considerations. The real value is that
when using scaled math you may have the opportunity to carefully scale the factors so that the
most common operations are simpler mathematically or logically than they would be without
careful scaling. In other languages you may write an infix algebreic equation and let the compiler sort

9/5/11 7:31 PM

Thoughtful Programming Chapter 3 http://www.ultratechnology.com/forth3.htm

60f 12

out the operations to do it. You can add a routine to do that for you in Forth also.

Normally we put in the equation as a comment and sort out the sequence of operations to implement it
outselves. In doing this we are used to refactoring an equation to simplify its calculation. In the same
way that expressions can be simplified to remove terms some equations can be juggled to use
operations that are simpler to implement than others. Shifts and adds can replace multplies and
divides or more complex operations when the values are scaled to suit key constants and key
calculations, or terms can be combined or made to drop out altogether. The program will execute this
equation N millions of times, by scaling it this way these multiples become 1%, this divide becomes a
2/, and these terms drop out. Of course we need to convert back to another range of numbers when we
are done with all the calculations in the main loop so you rescale again when you are done. If you
don't think this way you can't take advantage of this type of thoughtful programming technique.

Chuck showed me the equations he was using for transistor models in OKAD and compared them to
the SPICE equations that required solving serveral differential equations. He also showed how he
scaled the values to simplify the calculation. It is pretty obvious that he has sped up the inner loop a
hundred times by simplifying the calculation. He adds that his calculation is not only faster but more
accurate than the standard SPICE equation. In the article about OKAD from More on Forth Engines
Volume 16 Chuck mentioned scaling of units for his transitor model. He said, "I originally chose mV
for internal units. But using 6400 mV = 4096 units replaces a divide with a shift and requires
only 2 multiplies per transistor. This pragmatic model closely fits the measured IV curves. A
(spreadsheet style) display exists for manually fitting parameters." Even the multiplies are
optimized to only step through as many bits of precision as needed.

The third 10x comes from putting particular attention at design time to these issues of how to move
things from runtime to compiletime and from compiletime to designtime. The third 10x is to some
extent a recursive application of part of the second 10x. Just because you have a solution does not
mean that you should not consider trying a better solution. This is most important in low level code.

Wordlists are a feature of Forth that links multiple lists of words to be searched in the name
dictionary. One list of words for Forth, another for the assembler, another for the editor or at least that
is the way it worked in the old days. ANS Forth provides a mechanism for constructing and managing
wordlist trees in the name dictionary. I have noticed that this has often become a very abused feature
of Forth. The multiple ordering of the wordlists to do different things leads to the problem of the same
names doing different things in different wordlists and confusing the programmers as well as other
problems. I have seen this carried to such an extreme that the programmer has constructed more
wordlists than Chuck would write words! The worst case I have seen is the use of wordlist to
implement classes in a object oriented Forth. As I say before the words in Forth are a primitive form
of object if they don't do it for you you can use the CREATE DOES> construct for more object
functionality. When systems overload the concept of OO classes onto a wordlists I think it qualifies a
wordlist abuse. It introduces so much complexity.

Chuck has recently said that he has removed wordlists from Color Forth. With a 1K sized Forth that
can compile applications in a click and forget them in a click he isn't dealing with code that requires
being spread out over a wordlist name tree. Removing so much complexity from other places made
Chuck feel that wordlists were just not needed to deal with the complexity that he used to deal with.

9/5/11 7:31 PM

Thoughtful Programming Chapter 3 http://www.ultratechnology.com/forth3.htm

7 of 12

Removing wordlists is also one of the techniques that greatly simplified other words in the system and
allowed Chuck to build a 1K sized Forth that can compile applications in a click.

There are several improvements that Chuck has added to his newer Forth virtual machine model. One
of them is the address register and the other is the circular stacks. Chuck has explained that hardware
considerations aside the idea of the address register was that the Forth words @ and ! (fetch and
store) were clumsy at the top of the stack and were based on smaller atomic operations that the
programmer could take advantage of. @ was broken into two operationsA! and @A. Likewise ! was
broken into A! and !A. One advantabe of this approach is that the contents of the addressing pointer
can be preserved accross words independently of the data stack. Another advantage is the use of
auto-increment addressing memory access opcodes. The use of them permits auto-incrementing items
within loops of a program using less code and less time. There are some other consequences as he has
said as to what kind of code falls out when you write for this sort of virtual machine. All the people
that I worked with reported enjoying using the style and felt empowered with these techniques to
improve their Forth code.

I advised the programmers who were using ANS Forth only to experiment a little with addressing this
way in their high level code and gave them a simple set of definitions with a variable named A used
for addressing. Code written in that style and with BEGINSs instead of LOOPs and other more high
overhead words that do the same thing would result in a simpler and clearer style and make it trivial to
port their ANS Forth code to Machine Forth on the project to get a large automatic speedup on this
system

Another feature of Chuck's new Forth virtual machine model is his circular stacks. They greatly
simplify the construction of his hardware and make the stacks in his architecture faster than general
purpose registers in other architectures. They also greatly simply Forth. Chuck has said that stack
overflow and underflow errors have always been a problem not just for Forth but for everyone. The
problem is that they are destructive. Unanticipated errors happen but then the return stack gets
corrupted errors can compound and systems can crash. Overflowing stacks can corrupt code and other
data structures causing systems to crash. Hardware and software designers have put a lot of attention
into managing these errors with elaborate hardware and software. That elaborate hardware and
software adds complexity in other places like compilers and applications and that leads to more bugs.
Chuck wanted to find a simple solution that wouldn't introduce complexity. Having the bottom N
elements of the stack as a circular data structure meant that there was no arbitrary starting point.
When you were done it was empty. You never had to empty it out before using it again, it was always
at the start if you wanted it to be. If you program had bugs the worst thing that could happen on the
stack is that stack data would be corrupted. That kind if error is a lot easier to deal with than corrupted
code or memory structures. It also means that a Forth system does not have to deal with complex
hardware mechanisms or complex software mechanisms the problem is either avoided or minimized
as well as any approach can make it almost for free.

Now Chuck says to factor, factor, factor. But in fact he also sometimes does just the opposite, he
inlines his code! But not all the time, only were unrolled inner loops will improve the performance of
a critical routine. It is a common practice in other languages to allow the compiler to do this for you.
Chuck however simply specifies it explicitly when it is better than factored code for the problem at
hand. He doesn't do it with complete applications, only a few routines.

9/5/11 7:31 PM

Thoughtful Programming Chapter 3 http://www.ultratechnology.com/forth3.htm

8of 12

These inlined code unrolled inner loops also give Chuck access to the use of computed entry into a
code table. If you only transfer a maximum of 800 pixels in sequence when copying a video line you
can inline a sequence to move up to that maximum and eliminate all loop overhead in that sequence of
code. You can them compute the address in the code table into which to jump or call to transfer less
than 800 pixels. Chuck has abandoned the traditional DO LOOQOP constructs in Forth and replaces
them with simple BEGIN constructs or computed jumps into unrolled inner loop code tables. Another
factor at work here is the amount of code inside of the loop. The shorter the inner loop the higher the
percentage of overhead for looping and the more it begs to be unrolled.

One of the most powerful techniques I have seen is what Dr. Philip Koopman documents in STACK
COMPUTERS the new wave section 7.2.3., executable data structures. Code operates on data but they
are not mutually exclusive. Code can have data embedded in it and data can be executable. This is our
perspective in Forth. Some other languages and some hardware systems have a very different
perspective. If you can take advantage of it it is a very powerful technique and can generate the
tightest code possible on a large class of problems, problems that use decision trees.

Conclusion

Novice programmers, or commodity component programmers in some language are given a problem
and start right in writing (or pasting) code. More experience programmers know that time invested in
understanding the problem and designing the solution is more important than jumping into coding.
The master programmer knows that this stage may deserve being done more than once or recursively.
If you cobble together megabytes of code and then start testing it you would never consider starting
again. You already had to produce 1000x more code than you needed to, would you want to do it
again? If you carefully construct some well thought out code to match the problem at hand more
thinking or a little more recoding may be more fun and more productive than the first try.

So if you're new to Forth try it out. Perhaps you can find some way to get that exhilarating 10x
improvement in your programming. If you have been doing that for years remember how much fun it
was when you made that improvement and consider that it could be fun again. Try for that second 10x
with an open mind. OK, so you have been doing all this for years and your programs are about as
small and simple and fast and clean as you think is possible. Great, but don't stop there. Unless you
think you really have reached the end-all of computing be willing to try other things, experiment, look
for stuff you hadn't noticed before. If on the other hand you don't care about these issues and are
delightfully happy to do your sentence as a replaceable commodity programmer and you find learning
painful then none of this is applicable to you. It is only for people who want smaller, faster, cleaner,
clearer and better programs and more personal satisfaction.

As Chuck has said one of the rewards of thoughtful programming is the satisfaction of a job well
done. If you enjoy programming you probably enjoy doing it well and you may not enjoy being told
to crank out low quality code because it seems like a good idea to some bean-counting manager. It
makes you wonder how many times programmers expressed concern and were forced to put Y2K
bugs into programs against their will by short sighted managment looking at the quarterly budget.

One thing I am sure many people would think is that the techniques that Chuck uses are examples of
individual genius and individual effort that they are not going to be applicable to typical problems in

9/5/11 7:31 PM

Thoughtful Programming Chapter 3 http://www.ultratechnology.com/forth3.htm

9of 12

computing. I know that Chuck would not agree with that nor do I. I have seen too many other people
do it, and on teams. I worked with Chuck through my own company UltraTechnology and I worked as
director of programming at the iTV Corporation with Chuck. There I was able to examine the
relationship between team effort and programming environment and style. I was somewhat suprised to
find that a team of Machine Forth programmers using Chuck's style of problem solving and coding
combine with a management effort to guide the team worked very well. It really didn't appear that the
language or style of coding had any relationship with team coordination efforts other than the relative
number of bugs that different environments introduced. The Machine Forth programmers had no
problem sharing problems, sharing code, and having their contributions to the effort work in harmony
with the other programmers. It confirmed my experience that it is not the language but the way the
team interacts that is the biggest factor. However if the coding style introduces bugs they are harder to
find in a multiprogrammer project. The Machine Forth programmers consistently delivered very stable
high performance bug free code on schedule. It was also my job to train these programmers on
Machine Forth and I pleased to see that the techniques were easy to learn and easy to apply.

Another thing I am sure many people are going to think is that the techniques that Chuck uses is
useful for dealing with small problems but not large one. However the largest and most complex, not
to mention most expensive, software that I have encountered were VLSI CAD programs. I am sure
people will equate the incredibly small size of OKAD and its incredibly fast code with it just being a
trivial problem. Chuck's extreme optimization of the software only shows that his approach allowed
him to write a suite of application programs that perform the same functions that he wanted to use in
those huge expensive VLSI CAD programs. His ability to shrink a number of megabyte sized
application programs into his set of a number of kilobyte sized is not an isolated case. We had a set of
programmers who consistently wrote bug free 1K sized applications in Machine Forth. In one case we
had one ANS Forth program that was 100K rewritten to 1K in Machine Forth and made 1000x faster
by someone applying these programming techniques.

So why are Chuck's ideas about computing so unpopular? Well people tend to equate them with
twenty five year old Forths rather than seeing that he has significantly changed his approach to Forth
several times over the years. What is funny is that they will say they have no interest in what Chuck is
doing because he is still doing what he was doing twenty years ago. Chuck is doing Forth without 'C'
libraries linked in and with BLOCKS and with tiny non-ANS style Forth. Chuck would say that they
are the ones who are twenty years behind and are still doing what he was doing twenty years ago, they
just created a poor committee standardized version of where he was twenty years ago. So it is almost
funny that both views see the other as twenty years behind.

People get very offended when Chuck just plainly says that their code is 10x bigger than required, and
those are the Forth experts! The people doing 'C' or Forth in 'C' look at what he said and see those
100x numbers. They feel very insulted and sometimes claim that Chuck called them an idiot just
because he reported the result of a benchmark or the time he spend coding something. They would
rather refuse to believe the numbers or even refuse to look at them because they might shake up their
ideas about computing. If you are selling megaForths then Chuck's ideas that Forth only needs 1K and
more than that is most likely unneeded fat is not very attractive. If you are getting paid to teach people
how to write ANS Forth programs you might not like Chuck advising people to try something else. If
you never saw the original 10x and don't think that other people really say it you are not likely to
consider other hidden potential 10x factors.

9/5/11 7:31 PM

Thoughtful Programming Chapter 3 http://www.ultratechnology.com/forth3.htm

10 of 12

Chuck's ideas are really in the face of many of the things that are being taught in computer science.
They are in the face of all the folks who's computer software has been expanding about as fast as their
computer hardware for years or even sometimes falling behind. They are not applicable once you find
yourself buried in self-imposed complexity. They won't help you if mix and match them too much
with the conventional ideas.

While most of the Forth community has been working very hard to make Forth more like other
languages to get it to fit into the niche the world has for it Chuck has been trying to go in an opposite
direction. Rather than water down or dumb it down to look everything else Chuck has continued to
make it smaller, simpler, faster and more productive in iteration after iteration. Just as Forth was in the
face of conventional programming Chuck has chosen to not do what he thinks most everyone else is
doing, making Forth look and work more like other languages. He feels that are plenty of people
doing that. He wants to try to make Forth smaller, simpler, faster and more Forth-like again and again.
That is in direct opposition to most of the Forth community who want to agree to set in stone the way
things were done twenty years ago and then extend Forth further and further.

Neither effort seems to have done much for Forth. In this period the size of the Forth Interest Group
dropped steadily, leveled for a bit, then fell off again. Today I think c.1.f is a larger Forth community
than FIG. It is a shame too in the sense that FIG asks the experts to give presentations and then ask
them questions. Usenet offers equal time to newbies, green belts, black belts and masters and the
experts are more focused on exposing the fringes of Forth to people by endlessly debating ridiculous
ways to break the standard with some of the wierdest code any of us have ever seen. I really wonder
how anyone would get started with Forth today and how much of that original 10x, will be available
to them.

Final Thoughts

Chuck prefers the use of seven keys, cursor and function keys rather than a mouse for precision of
control. He uses a full keyboard for writing Color Forth scripts with function keys assigned as color
change tokens. His GUI in OK uses the full graphics screen in a number of different modes of
operation rater than having the look of popular GUI with resizable, movable, layered windows on a
simulated desktop. I prefer the mouse driven interface to the seven function keys but the interface is
still left, right, up, down, and a couple of buttons. I have said for years that something that looks to the
user like a popular GUI with resizable, movable, layered display windows and a simulated desktop
only takes a couple of K of code. Chuck has demonstrated that a windows accelerator in hardware
only requires a few transistors. These things can be simple, fast, and mostly painless. The application
of Chuck's methods fits well when creating a small simple GUI or OS with efficient implementations
of the abstractions that the application demands.

Chuck's idea of the future is more custom silicon and machines that are efficient at what they do. All
machines will not need Windows (tm) or Unix or Forth for that matter. Chuck likes the abstraction of
source code being interpreted in embedded applications. He has even joked that perhaps after Y2K it
will be mandated. With a tiny 1K Forth or Forth in hardware machines would embody underlying
abstractions used by programmers. Chuck's methods apply well to a team of programmers setting the
abstractions that they need. Chuck has said that he would enjoy seeing a small project be funded to
have a small team of a few people knock off something resembling the modern GUI desktop and set

9/5/11 7:31 PM

Thoughtful Programming Chapter 3 http://www.ultratechnology.com/forth3.htm

11 of 12

of applications in Forth on a Forth machine that does everything useful but that is a thousand times
smaller and simpler than the alternatives people have now.

A tiny piece of silicon can contain hardware that performs a particular task with incredible efficiency
and with a tiny general purpose central processor. One advantage of these machines will be that
software will support only the devices found on chip. You can have all the special cards, video cards,
analog cards, network cards, lcd support, gigabit fiber links, popular I/O interfaces etc. and for a given
device there only needs to be one set of drivers to support the hardware. There is no need to support
many extra layers of abstraction or inefficiency between what needs to be done, what the hardware
can do, and what the software does.

After of number of years of working in these environments I must admit that I feel that I have become
very spoiled. I am used to having fun solving problems quickly and feeling very productive. I have a
strong sense of satisfaction with the problems that I have throught through well. I enjoy showing other
people how easy it is to do things this way. I recall how when I worked as a consultant to big
companies on all kinds of computer with all kinds of software that I enjoyed solving the most
complex and involved problems and I think how different that world was than one where the
problems are small ones and I can get so much more done. I can also understand how most people
look at Chuck's methods on the surface and think that it just doesn't apply to what they have to do.
Chuck's methods wouldn't solve all of the problems that they have. Their problems are often related to
different methods and Chuck strategy is to avoid most of the problems other people must face to be
more effective at solving the problems he wants to solve.

Forth Essay Chapter 1

Forth Essay Chapter 2

Related references at this site

Fireside Chat 2000 Chuck Moore to SVFIG 11/11/00

Fireside Chat 1999 Chuck Moore to SVFIG 12/18/99

1x Forth Chuck Moore 4/13/99

Chuck Moore interviewed in his home 6/6/93

Fireside Chat 1998 Charles Moore 11/30/98 (first 50 min)

Color Forth (posted 11/2/00)

Dispelling the User Illusion w/ Color Forth code examples. Chuck Moore to SVFig on 5/22/99

OKAD reference page 9/3/00
Forth Chip Reference Page Jeff Fox 8/2000

People at UltraTechnology Chuck Moore

Chuck Moore (owner of Computer Cowboys)

More on Forth Engines Volume 16, 1992 - OKAD articles Charles Moore, Dr. C. H. Ting, 2/25/99
Color Forth Update 9/16/97

Color Forth Charles Moore 7/27/97

Fireside Chat 1996 Charles Moore 11/16/96

Life Beyond MuP21 Charles Moore to the SVFIG 5/27/95

MuP21 a High Performance MISC Processor Dr. C.H. Ting and Charles Moore 3/17/95

9/5/11 7:31 PM

Thoughtful Programming Chapter 3 http://www.ultratechnology.com/forth3.htm

12 of 12

Chuck Moore to SVFIG on 4/23/93.
Fireside Chat 1993 Charles Moore to SVFIG 11/93
Forth - a Language for Interactive Computing Charles Moore 1970 HTML (first Forth
document), posted 1995

PDF version (formatted like original typed paper) posted 6/2000

Microsoft Word version (formatted like original typed paper) posted 1995
UltraTechnology Homepage

Forth (Thoughtful Programming) Jeff Fox 12/99

Introducing Aha
Aha Jeff Fox 11/29/00

F21 in a mouse GUI demo of desktop with application in 600 words of code. 3/8/00
UltraTechnology site dated index with info on and pictures of F21d tests.

Streaming Video Theater

Forth -- the LEGO of Programming Languages 1/19/95 11/00
Parallel Forth - the new approach OCCAM and Forth-Linda, Dr. M. Montvelishsky, FD 1993

F21 and F*F : F21 and Parallelizing Forth, J. Fox, Dr. M. Montvelishsky, FORML 1993
Low Fat Computing Jeff Fox 12/6/98

ANSI Forth is ANTI Forth Jeff Fox 2/28/99, Chuck Moore 7/26/98, 3/5/99
Distributed Shared Memory in Forth Parallel Forth, J. Fox, 1995

Forth-Linda Parallelizing Forth, J. Fox, FORML 1991

Forth Stamp Jeff Fox 9/2/00

Forth Meta Compilation J. Fox 8/21/97

Forth Meets Laws of Form 1994 J. Fox

F21 Chess 1.6 8/12/97

html guide to OK version 1.01 Source code to OK ver 1.01 for the MuP21 4/18/95
P21Forth 1.02 User's Manual in hypertext and Word for Windows formats 4/16/95

9/5/11 7:31 PM

