
● History of Forth

● Overview of Forth

● Applications of Forth

● Forth Language

● Forth Example

● Why Use Forth?

● Forth Systems

● System Benchmarks

● Forth Resources

Introduction to Forth for
Scientists and Engineers

January 2004

Copyright © 2004 Krishna Myneni

NASA/CXC/SAO

History of Forth

● Forth was developed by Chuck Moore in the 1960s (see
Forth - The Early Years by C. Moore and
The Evolution of Forth by E. Rather, et al).

● Original use for Forth was to perform instrument
control, data acquisition, and least-squares curve-
fitting at NRAO and Kitt Peak.

● Became a formal programming language in 1977 with
Forth-77 standard. Subsequent standards were Forth-
79 and Forth-83 by the Forth Standards Team.

● First commercial Forth system for IBM-PC introduced
in 1982 by Laboratory Microsystems, Inc.

● Became an ANSI standard language in 1994, resulting
in ANS-Forth.

Copyright © 2004 Krishna Myneni

Overview of Forth

● Forth is a computing environment.
– Forth is interactive.

● Perform computations directly at the Forth
prompt.

● Define and examine variables and constants
● Define and execute new Forth words

(individual subroutines).
● Execute operating system commands.

ok
Copyright © 2004 Krishna Myneni

Overview of Forth

● Forth is a high-level language.
– Forth is structured:

● Like all modern programming languages, Forth
provides the necessary control structures for
prescribing an ordered flow of execution.

– Forth is extendable:
● Forth provides no built-in support for arrays, data

structures, lists, objects, etc., but Forth allows the
user to add such programming constructs to the
language itself.

● Forth can support all programming methods:
procedural, modular, object-oriented, or whatever
new comes along ...

ok Copyright © 2004 Krishna Myneni

Overview of Forth

● Forth is a low-level language.
– Forth provides bit-level operations and

selection of number base.
● The user can work directly in hex and binary bases ---

the language of hardware. Results of single hardware
operations, such as writing to a port, can be verified
immediately.

– Most Forth systems provide an assembler
● The assembler is often a Forth program itself. The

programmer can switch back and forth between Forth
and assembly code within the same program.

ok
Copyright © 2004 Krishna Myneni

Overview of Forth

● Forth syntax is derived from use of a
data stack.
– The basic method of passing arguments

to, and obtaining results from, Forth
words is through the data stack.

Bottom of Stack

Top of Stack

1 cell

ok
Copyright © 2004 Krishna Myneni

Overview of Forth

● Forth maintains a list of words, or a
dictionary.

words
WORD WORDS FIND ' [']
[] CREATE DOES> >BODY
FORGET COLD ALLOT ?ALLOT LITERAL
EVALUATE IMMEDIATE CONSTANT FCONSTANT VARIABLE
FVARIABLE CELLS CELL+ CHAR+ DFLOATS
DFLOAT+ SFLOATS SFLOAT+ ? @
! 2@ 2! A@ C@
C! W@ W! F@ F!
DF@ DF! SF@ SF! SP@
RP@ >R R> R@ 2>R
2R> 2R@ ?DUP DUP DROP
SWAP OVER ROT -ROT NIP
TUCK PICK ROLL 2DUP 2DROP
2SWAP 2OVER 2ROT DEPTH BASE
BINARY DECIMAL HEX 1+ 1-
2+ 2- 2* 2/ DO
?DO LOOP +LOOP LEAVE UNLOOP
I J BEGIN WHILE REPEAT
UNTIL AGAIN IF ELSE THEN
CASE ENDCASE OF ENDOF RECURSE
BYE EXIT QUIT ABORT ABORT"

ok

...

Copyright © 2004 Krishna Myneni

Applications of Forth

● Embedded Systems:

– smart cards, robotics,
Fed-Ex package trackers,
embedded web servers,
space applications

● Software Tools
Development

– writing cross-assemblers and
disassemblers

– writing parsers and
programming languages

– scripting and software testing

● Application Development

– editors, word processors,
games, circuit modeling,
VLSI design, ...

● Laboratory Automation

– Hardware Interfacing

– Data acquisiton, data logging

– Instrument control

● Engineering and Scientific
Computing

– Data analysis

– Simulation and modeling

– Visualization

● Exploratory Computing

– algorithm development

– artificial intelligence
programming,
cellular automata,
evolutionary programming

Copyright © 2004 Krishna Myneni

 1
1 2 SWAP .S 2

 1
 3
1 2 3 ROT .S 2

Forth Language

Stack Operations:

Examples:

 2
1 2 .S 1

DUP SWAP ROT DROP OVER
>R R> ?DUP NIP TUCK
PICK .S . 2DUP ...

Copyright © 2004 Krishna Myneni

Forth Language

Integer Arithmetic: + - * / */
MOD /MOD 1+ 1-
NEGATE ABS

Examples:

3 8 * . 24 ok

56 5 MOD . 1 ok

1048576 10120 153 */ . 69356791 ok

Copyright © 2004 Krishna Myneni

Forth Language

Relational Operators: = < > <= >=
0= 0< ...

Examples:

1 3 < . -1 ok

4 0= . 0 ok

-5 -2 <= . -1 ok

Copyright © 2004 Krishna Myneni

Forth Language

Bitwise Operators: AND OR XOR INVERT
LSHIFT RSHIFT 2* 2/

Example:

: byte-swap (n – m)
 DUP 8 RSHIFT SWAP 255 AND 8 LSHIFT OR ;

4096 byte-swap . 16 ok

Copyright © 2004 Krishna Myneni

Forth Language

Number Base Operations: DECIMAL HEX BASE

Example:

HEX FFD2 DECIMAL . 65490 ok

2 BASE !
10111001 DECIMAL . 185 ok

-1
2 BASE ! U. 11111111111111111111111111111111 ok

Copyright © 2004 Krishna Myneni

Forth Language

Branching: IF ... THEN
IF ... ELSE ... THEN
CASE ... OF ... ENDOF ... ENDCASE

Example:

: even? (n --)
 2 MOD 0= IF .” YES” ELSE .” NO” THEN ;

5 even? NO ok
8 even? YES ok

Copyright © 2004 Krishna Myneni

Forth Language

Looping: DO ... LOOP ?DO ... LOOP
DO ... +LOOP ?DO ... +LOOP
I J
BEGIN ... AGAIN
BEGIN ... UNTIL
BEGIN ... WHILE ... REPEAT

Example:
: 2^ (n – 2^n) 1 SWAP LSHIFT ;

: pow2-sum (n – m | sum of terms 2^i, i=0,n-1)
0 SWAP 0 ?DO i 2^ + LOOP ;

 10 pow2-sum . 1023 ok
Copyright © 2004 Krishna Myneni

Forth Language

: pad2 (n – m | m is next power of 2, >= n)
DUP 0 <= IF DROP 1 THEN 1
BEGIN
 2DUP >
WHILE
 2*

 REPEAT
 NIP ;

348 pad2 . 512 ok

Indefinite Loop Example:

Copyright © 2004 Krishna Myneni

Forth Language

Recursion Example:

\ Find the greatest common divisor of two
\ integers

: gcd (n1 n2 -- gcd)
 ?DUP IF SWAP OVER MOD RECURSE THEN ;

1050 432 gcd . 6 ok

From A Beginner's Guide to Forth by J.V. Noble

Copyright © 2004 Krishna Myneni

Forth Example

Launch the Space Shuttle

Copyright © 2004 Krishna Myneni

Forth Example

: launch-clock@ (-- t | return a signed time in 1/100th of seconds)
(... system dependent code ...) ;

: hms>s (h m s – s2 | convert hours, min, sec to seconds)
>R 60 * >R 3600 * R> + R> + ;

: hmsh>t (h m s hs – t | convert to hundredths of seconds)
 >R hms>s 100 * R> + ;

: T- (h m s hs – t) hmsh>t NEGATE ;
: T+ hmsh>t ;

: is-time? (t – flag | is t <= launch clock ?) launch-clock@ <= ;

Timing is everything ...
some basic words we will use:

Copyright © 2004 Krishna Myneni

Forth Example

: launch (-- | launch the space shuttle)
BEGIN
(H M S HS)
 00 00 06 60 T- is-time? IF start-main-engine-3 THEN
 00 00 06 48 T- is-time? IF start-main-engine-2 THEN
 00 00 06 36 T- is-time? IF start-main-engine-1 THEN
 00 00 00 00 T+ is-time? IF ignite-SRBS release-SRBS THEN
 00 00 00 01 T+ is-time?
UNTIL ;

Copyright © 2004 Krishna Myneni

Forth Example

Our Forth definition of launch is more readable
than the following equivalent C function:

void launch()
{

do
{
 if (is-time(Tminus(00, 00, 06, 60))) start-main-engine-3();
 if (is-time(Tminus(00, 00, 06, 48))) start-main-engine-2();
 if (is-time(Tminus(00, 00, 06, 36))) start-main-engine-1();
 if (is-time(Tplus(00, 00, 00, 00)))
 {
 ignite-SRBS(); release-SRBS();
 }
} while (! is-time(Tplus(00, 00, 00, 01)) ;

}

Copyright © 2004 Krishna Myneni

Forth Example

Forth's extendability allows us to write launch even
more simply!

: launch (-- | launch the space shuttle)
BEGIN

 (H M S HS)
 00 00 06 60 T- at start-main-engine-3
 00 00 06 48 T- at start-main-engine-2
 00 00 06 36 T- at start-main-engine-1
 00 00 00 00 T+ at ignite-SRBS release-SRBS
 00 00 00 01 T+ is-time?
UNTIL ;

Copyright © 2004 Krishna Myneni

Advanced Forth

However, simplicity is not free ...

: at (t <”...”> – | if t <= launch clock take actions)
POSTPONE launch-clock@ POSTPONE <= POSTPONE IF
BEGIN
 BL WORD DUP COUNT NIP
WHILE
 FIND
 IF
 POSTPONE LITERAL POSTPONE EXECUTE
 ELSE
 DROP
 THEN
REPEAT
DROP POSTPONE THEN ; IMMEDIATE

Copyright © 2004 Krishna Myneni

Advanced Forth

● A word written in Forth can act as a compiler.

● “at” is an IMMEDIATE word.

● When the word “at” is used inside the definition of a word,
it compiles into the current definition the specified
operations and IF ... THEN logic structure.

● “at” parses the rest of the input line to place the specified
actions within the IF ... THEN structure.

● In Forth we can also write a word which may be
used to CREATE new words.

Copyright © 2004 Krishna Myneni

Why Use Forth?

● Forth allows both low-level and high-
level programming.
– A wide range of software application needs can be

addressed by Forth, from writing time-critical
embedded processor code to developing entirely
new programming languages. Forth is ideally
suited for mid-level applications such as
laboratory data-acquisition and instrument
control.

Copyright © 2004 Krishna Myneni

Why Use Forth?

● Forth simplifies testing of code at
every stage of development.
– With its interactive environment and

incremental compilation, new Forth words can
be tested as they are written. The bottom-up
approach of building new words upon
previously tested words leads to very robust
code.

Copyright © 2004 Krishna Myneni

Why Use Forth?

● Forth can be extended to suit the
application.
– Definitions of high-level words in a well-written

Forth application are simple and readable.
Often, they read like a plain English
description of the actions being implemented.

– Source code which is simple and readable is
less prone to programming mistakes, easier to
maintain, and is self-documenting.

Copyright © 2004 Krishna Myneni

Why Use Forth?

● Forth is easy to learn.
– Forth's interactive environment provides a

quick way to test simple Forth words. The user
gets instant feedback without the edit-compile-
execute cycle of other languages.

– New Forth programmers can be productive in
a matter of days with the guidance of a Forth
expert.

Copyright © 2004 Krishna Myneni

Forth Systems

● SwiftForth and SwiftX
http://www.forth.com/ (Windows,
embedded targets)

● VFX Forth and Cross Compilers,
http://www.mpeltd.demon.co.uk/
(Windows, embedded targets)

● iForth (Windows, Linux)

● Camel Forth for embedded
processors (8051, 8086, Z80,
and 6809)

● gforth (DOS, Windows, OS/2,
MacOS X, Unix, Linux, other)

● PFE (DOS, Windows, OS/2,
MacOS X, Unix, Linux, other)

● kForth (Windows, Linux,
FreeBSD, BeOS)

● Win32Forth (Windows)

● See also Other Free Forths

Copyright © 2004 Krishna Myneni

BubbleSort MatrixMult Sieve Fib
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

gcc

VFX Forth

iForth

SwiftForth

gforthfast

gforth

Win32Forth

kForthfast

PFE

kForth

Re
la

tiv
e

Ex
ec

ut
io

n
Ti

m
e

Forth System Benchmarks

Copyright © 2004 Krishna Myneni

Forth Resources

● Forth Programmers Handbook
● Forth Code Index
● comp.lang.forth
● Forth Interest Groups:

– FIG-UK
– FIG-USA
– other FIGs

Copyright © 2004 Krishna Myneni

