
Programming Forth

Stephen Pelc

i

Programming Forth

Copyright
Copyright (c) 2003, 2004, 2005, MicroProcessor Engineering Limited

For further information
MicroProcessor Engineering Limited
133 Hill Lane, Southampton
SO15 5AF, UK
Tel: +44 (0)23 8063 1441
Fax: +44 (0)23 8033 9691

e-mail: mpe@mpeltd.demon.co.uk
tech-support@mpeltd.demon.co.uk

web: www.mpeltd.demon.co.uk

mailto:mpe@mpeltd.demon.co.uk
mailto:tech-support@mpeltd.demon.co.uk
http://www.mpeltd.demon.co.uk

Acknowledgements
I would like to thank the following people in particular for their involvement in the
content of this book:

Peter Knaggs, Chris E. Bailey, Bill Stoddart, Bob Marchbanks, Hans Bezemer

These people have influenced “Programming Forth” and contributed to it, and their
input is valued. All faults are my own. Much criticism and proof-reading was
provided by the readers of the comp.lang.forth newsgroup, especially:

William Cook, Anton Ertl

Programming Forth
Copyright © 2005
MicroProcessor Engineering Limited

iii

Contents

1 Introduction 1
About this book 1
What Forth is 1
Key concepts 2
Interactivity, Development, Testing and Debugging 2
Writing programs in Forth 4
Editors 5
Forth Implementation 6
MPEisms 6

2 Architecture of Forth 7
Forth Virtual Machine 7
Stacks and postfix notation 8
Data types 9
Words and Numbers 10
Interpreting and compiling 10
Defining Words and Immediate words 10
Factoring 11

3 How Forth is documented 13
Comments 13
Stack comments 13
Notation 13

4 First words in Forth 15

5 Components of Forth 19
Data stack operations 19

Return Stack operations 20
Maths operations 20
Comparisons 21

Widely available 22
Bitwise logic 22
Memory operations 22

Widely available 23
Constants and variables 23

CONSTANTs 23
VARIABLEs 24
VALUEs 24

Control structures 24
IF ... THEN 25
IF...ELSE...THEN 25
EXIT 25
DO ... LOOP and DO ... n +LOOP 26
?DO ... LOOP and ?DO ... n +LOOP 27
BEGIN ... AGAIN 27
BEGIN ... UNTIL 27
BEGIN ... WHILE ... REPEAT 28

iv

CASE ... OF ... ENDOF ... ENDCASE 28
MPEisms: CASE extensions 29
Restarts and errors 30

Text and strings 30
Counted strings 30
Character Strings 31
Text and String input 31

Print Formatting 32
Vocabularies 33
Wordlists 34

6 Example: Date validation 37
Date Validation: the requirement 37
Designing the solution 37
Coding the solution 38
Putting it all together 39
Lessons from this example 39

7 Simple character I/O 41
Output 41
Input 41
String Output 42
String input and the input stream 43
Number output 43
Number input 44
Redirecting KEY and EMIT 45

8 Defining with CREATE ... DOES> 47
Arrays 48
Structures 49

9 Diary and Phone Book Examples 51
Diary 51

Specification 51
Implementation 51

An Internal Phone Book 55
Specification 55
Some design notes 56
Implementation 57

10 Execution Tokens and Vectors 63
Execution vectors 63
Execution arrays 65

11 Extending the compiler 67
Immediate words 67

Cautionary notes 69
Accessing the compiler 69
Structures revisited 70

Cautionary notes 72

12 Errors and exception handling 75
ABORT, QUIT and ABORT” 75
CATCH and THROW 75

v

Description 75
Sample implementation 76
Features 77
Stack rules for CATCH and THROW 77
Some more features 77

Error codes and return results 78
Always clean up 79

13 Files 81
ANS File Access Wordset 81
Simple file tools 83

14 Common extensions 85
Multitasking 85

Cooperative and Preemptive taskers 85
USER variables 85
Simple Forth tasks 86
I/O and PAUSE 86
Error checking 87

Floating point 87
Local variables 88

Cautionary notes 89
Object oriented programming 90
Integrated assembly 91
Source location 91
Mixed language programming 91

Parameter passing 91
DLLs and shared libraries 92
Static linking 92
Jump tables 93

15 Embedded Systems 95
Defining and using memory 95
Harvard targets 96
Compiler and Interpreter extensions 96

Defining words 97
Compiler macros 99

I/O ports 100
Interrupt handlers 100

Assembler interrupt 101
High level interrupts 102
Interlocks 103

Block I/O 104
Source in blocks 106

Umbilical Systems 106

16 Forth Internals 109
Anatomy of a Forth system 109
Navigating the dictionary structure 111
Structure of compiled code 111

Native Code Compilation (NCC) 111
Subroutine Threaded Code (STC) 112
Direct Threaded Code (DTC) 112
Indirect Threaded Code (ITC) 113
Token Threaded Code (TTC) 113

vi

Other forms 114
Forth engines and stack machines 114

Commercial devices 115
Prototype and research machines 115
Notes on embedded real-time 116

17 Using the Forth interpreter 119
Configuration example 119

Application and design 119
Implementation 119

Phone book revisited 123
Design 124
Implementation 124
Deviations, issues and lessons 125

18 Code Layout 127
Why a standard? 127
Implications of editors 128
Tabs 128
Horizontal and Vertical layouts 129
Comments 129
File layout 130

Header Section 130
Code sections 132
Test Section 132

Base and numbers 132
Vocabularies and wordlists 133
Layout of a definition 133

Header comments 133
Name and stack comment 134
Indenting and phrasing 135
End of definition 135
Comments 135

Defining words 136
Control Structure layout 136

Flags and limits 136
Indenting 137
Short Structures 137
I’ve changed my mind 138

Layout of code definitions 138
Constants, Values and Variables 139
Buffers 139
Data Tables 139
Case questions 140

19 Exercises 141
Stack operations 141
Arithmetic 141
Input, output and loops 146
Memory 148
Defining words 151
Miscellaneous 152

20 Solutions to Exercises 153
Stack operations 153

vii

Arithmetic 153
Input, output and loops 160
Memory 162
Defining words 164
Miscellaneous 166

21 Adopting and managing Forth 167
Interactivity and exploration 167
Extensibility and notation 168
Limited memory 168
Why not the common language? 169
We used Forth 15 years ago, but ... 170
Managing Forth projects 171

Managers 171
Programmers 172
Training 172
Portability 173
Lifecycle 173

22 Legacy issues 175
Forth Standards 175

Native Code Compilers 175
Converting from Forth-83 175

Screen files 176
Files 176

23 Other Books and Resources 177
Starting Forth – Leo Brodie 177
Thinking Forth – Leo Brodie 177
Forth Programmer’s Handbook – Conklin & Rather 177
Forth Application Techniques – Rather 178
Other Resources 178

Forth Interest Group 178
Usenet news groups 178
Conferences 178
Amazon 178

24 Index 179

List of Figures
Figure 1: Formal debugging ... 3
Figure 2: Forth and C Virtual Machines ... 7
Figure 3: Sendit VM and registers.. 8
Figure 4: Block buffers .. 104
Figure 5: Source in blocks.. 106
Figure 6: Umbilical Forth model .. 107
Figure 7: Typical Forth memory model ... 109
Figure 8: Dictionary entry.. 110

List of Tables
Table 1 : File access data types .. 81
Table 2: Compiler extension directives... 97

1

1 Introduction

About this book
Programming Forth introduces you to modern Forth systems. In 1994 the ANS Forth
standard was released and unleashed a wave of creativity among Forth compiler
writers. Because the ANS standard, unlike the previous informal Forth-83 standard,
avoids specifying implementation details, implementers took full advantage. The
result has been what I choose to call modern Forths, which are available from a range
of sources both commercial and open-source.

This book concentrates on introducing people who already know some programming
to ANS Forth systems. It is not a treatise on ANS Forth itself – if you need the gory
details, the last public (freely distributable) draft of the ANS standard is included on
the CD supplied with purchased copies of the book. Copies in PDF format are
available by download from http://www.mpeltd.demon.co.uk/arena at no cost. If you
are a novice programmer (or indeed at all interested in the craft of programming)
read this book alongside “Starting Forth” and “Thinking Forth” by Leo Brodie. How
to get them is in the chapter on other books and resources.

Apart from the introduction of ANS Forth itself, Programming Forth includes
examples of varying sizes, exercises, some advanced topics, how to take best
advantage of Forth and project management.

The material is derived from course material from MicroProcessor Engineering and
teaching work at Teesside University by Bill Stoddart and Peter Knaggs, plus new
material. Both the printed and the PDF versions are updated from time to time to
incorporate changes requested by readers. If you want to comment on the book
please send feedback to programforth@mpeltd.demon.co.uk - I appreciate all your
comments and contributions.

What Forth is
Forth is a member of the class of extensible interactive languages, which includes
classical implementations of Smalltalk. Extensible means that there is no distinction
between the keywords (core words) and the routines that you write. Once a new
definition has been compiled, even from the keyboard, it is immediately available to
you. Interactive means that you can talk to it from your keyboard.

Forth is a different sort of computer language. Forth code is easy to debug because
Forth is interactive, fast because Forth is compiled and powerful because it is
extensible. Forth is a language with a definite style.

Forth was developed by Charles (Chuck) Moore in the early 1960s. Moore's work
with computers at MIT and the Stanford Linear Accelerator Centre left him
dissatisfied. The turn-round time for editing, compiling and running a program using
the then current generation of ALGOL and FORTRAN compilers was too slow. His
solution to this was to write a simple text interpreter in ALGOL which read in words
(any printable characters except space) and performed actions associated with them.
Words were either primaries (i.e. "understood" by the interpreter) or secondaries (i.e.
defined in terms of other words).

After his initial success with an ALGOL based interpreter at MIT and Stanford,
Moore moved on to work with Burroughs equipment. This hardware was strongly
oriented around a stack. This influenced the further development of Forth.

http://www.mpeltd.demon.co.uk/arena
mailto:programforth@mpeltd.demon.co.uk

Introduction

2

Implementations were written in BALGOL, COBOL and SBOL (the Burroughs
Systems Programming Language). These provided manipulation words for the stack:
DROP, DUP, SWAP, etc. which are still found in modern Forth systems. The first true
Forth system which resembled what we now perceive as Forth was then created by
Moore on an IBM 1130. The word size of this machine limited the users to having
names of not more than five characters. Had it not been for this IBM limitation the
name `Forth' would have been `Fourth' - standing for Fourth Generation Language.

The first Forth application was a Radio Telescope Data Acquisition Program written
for a Honeywell H316 at the National Radio Astronomy Observatory. This
implementation of Forth used a dictionary to store words defined by the user.

Key concepts
This text is derived from a posting on comp.lang.forth by Dwight Elvey.

“Like many programming languages, Forth has an execution model or virtual
machine. Unlike many languages, Forth exposes this to the programmer.

The Forth virtual machine is discussed in more detail in the next chapter.

All source code elements are either numbers or words. Words are what are called
functions, procedures or subroutines in other languages. Words can be either user
defined or part of the Forth core and are entered as a dictionary. Words are
composed of other Forth elements and/or true machine code.

All elements are executed in sequential order, left to right, top to bottom. Sequential
order is only broken by flow structure words.

Normal input and output of words is by the data stack, return stack, variables
(values), or arrays.

Nesting is maintained by a return stack. Execution of words implies nesting, except
at the lowest levels of true machine code.

The programmer is responsible to maintain stacks.

Forth can be either compiled or interpreted. These can be selected at will by the
programmer but is usually done in an orderly fashion.

All the rest comes from the above.”

One of the key portions of Forth is its interactivity – you sit in front of the keyboard
and play (explore) with your application. Daniel Ciesinger wrote:

“Further, I use Forth to test C libraries. Experience is that this finds errors which
are not found by C test procedures. I even prefer it to Rational Test Realtime which
is too indirect for my taste. Takes eternities to write test cases. In Forth, you just test
interactively and cut and paste your test cases into your favourite editor afterwards,
so you can run the same test again.”

Interactivity, Development, Testing and Debugging
Elizabeth Rather wrote this posting about working with Chuck Moore (the originator
of Forth) on comp.lang.forth:

“Any given problem has a certain intrinsic level of complexity. In the solution of the
problem, this complexity will be conserved: if you dive in with too little advance
thought, your solution may become very complex by the time it's done. On the other

Introduction

3

hand, if you invest more in thought, design, and preparation, you may be able to
achieve a very simple solution (the complexity hasn't gone away, it's become
embodied in the sophistication of the design).

In connection with our recent discussion, that investment certainly can take the form
of prototyping. When I was working with Chuck, he'd typically go through the
following process:

1. Read the spec. Assert confidently that it really isn't as complicated as that, and
write a very clever program that solves the essence of the problem.

2. Enter a phase in which the customer repeatedly points out aspects of the spec that
have been ignored or omitted; in fixing these, the code gets more and more
complicated.

3. At some point, a full understanding of the problem emerges. All the previous code
is thrown out and a new program emerges which represents a simple, elegant
solution to the whole problem.

Elizabeth’s notes illustrate that coding is not the major part of delivering software. I
am very rarely given a formal specification for a new piece of software, despite the
effort, time and cost-savings that a good specification provide. Writing a piece of
software is mostly an iterative process involving exploration, design, coding and
debugging. These realities of the software engineer’s life lead to techniques whose
buzzwords include “rapid prototyping” and “extreme programming”. In such an
environment, debugging is far more expensive than coding in both time and cost.

Interactive testing and debugging is a key feature of Forth. Rapid debugging can be
achieved by the application of formal scientific method. The slide below is taken
from one of our course presentations.

10

Debugging

Formal scientific method
applied to software

Debugging is not an art -
Debugging is a method

Support it at the lowest
level

Methodology is important

1. There is a problem

2. Gather DATA

3. Form HYPOTHESIS from DATA

4. Design EXPERIMENT

5. Prove HYPOTHESIS with EXPERIMENT

6. Fix this problem

Until you believe you have tested everything

Debugging is the problem
Spec = 20-25%
Code = 20-25%
Debug & Integrate = >50%

Figure 1: Formal debugging

The diagram above shows that debugging consists of two nested loops. How fast you
can go around the inner loop determines how fast you can debug a system.
Interactive debugging is the fastest route I have found. The stages of debugging are:

Introduction

4

1) Make the problem repeatable. This usually involves finding out which inputs
cause the problem.

2) Gather data about the problem. This observation is crucial, so take this stage
slowly and carefully. I have seen people immediately dismiss exception displays
and crash-dumps which contain vital clues.

3) From the data, form a hypothesis as to what caused the problem.

4) Design an experiment which tests the hypothesis. The important part in
designing the experiment is to ensure that it gives a yes/no answer.

5) Run the experiment. If the hypothesis is incorrect, go back to stage 2.

6) Fix the problem.

7) If you have more bugs to fix, go back to stage 1 for the next problem.

Forth is a wonderful tool for debugging systems and their software. Effective
debugging in any programming language requires us to understand the techniques
required for efficient debugging and how to acquire the required information.

Writing programs in Forth
Forth often takes a little longer to learn than other languages. Just like spoken
languages, there are many words to learn in Forth before you can use it well. In Forth
parlance, what are called functions, procedures or subroutines in other languages are
called words. Forth is a language in which very little is hidden from you. Nearly every
word that we used along the way to some other function has a name, and is
documented in a glossary.

As a result of this openness there are many words in the dictionary (type WORDS to see
them). Functions in Forth are called words in Forth jargon. These words are stored as a
dictionary, and the group of words forming your area of interest - the context in which
you work - is known as a vocabulary. For example, words used to define the
assembler are often kept in a vocabulary called ASSEMBLER. As in all computer
languages, there is a jargon to Forth. In this instance the jargon is a technical language,
and serves as a set of communication tools so that we can explain our ideas to each
other without being bogged down in the minutiae. Persevere, Forth is not only well
worth the effort, but is a tool of spectacular productivity in the right hands.

The Forth run-time package is actually a compact combination of interpreter, compiler,
and tools. A command or sequence of commands (words) may be executed directly
from the keyboard, or loaded from mass storage as if from the keyboard. In hosted
versions of Forth (and some embedded systems), you can also take input from a normal
operating system text file, created by a normal (non-Forth editor). Programs in Forth
are compiled from combinations of existing words (already in the dictionary), new
words as defined by the user, and control structures such as IF ... ELSE ...
THEN or DO ... LOOP. Often, new words are developed interactively at the
terminal before the final (and tested) version is then entered using the editor and saved
on disc, where it can be invoked from the keyboard or used by another program. If you
are teaching yourself Forth, get all your books ready in front of the terminal, and try
things out as you go along.

The beauty and power of Forth lies in interactivity, extensibility and flexibility. New
words can be added either at high or low (assembler) level. Forth is one of the very few
languages which can define a data structure and how it is used inside a single
definition. This ability to create new words known as defining words, which can add

Introduction

5

new classes of operators to the language, is one of the keys to the extraordinary power
of Forth in the hands of an experienced programmer. A bad Forth programmer is just
as much a disaster as in any other language.

If your experience of programming has been in traditionally organised languages such
as C or BASIC, you will find reading and writing programs in Forth somewhat bizarre
at first. Patience brings rich rewards. Forth becomes much easier to understand once
you have mastered a few ideas and played with the language. Among the most
important aids in using Forth is the choice of word names. Think about the name of a
word in advance. Poets make good Forth programmers. Verbs, nouns, and adjectives
all have their place in good Forth programming style. Good choice of word names
leads to very readable code, as does the use of white space in source code. You can use
any character within a word name - the use of printable ones is sensible. Word names
can be up to 31 characters long (more in some implementations), and all the characters
are significant.

Forth programs keep most of their working variables on the stack, rather than in named
variables, so reading some sections of code can be a little mind-boggling - even for the
experienced. The secret is to keep definitions short and simple. Lazy programmers
often make good programmers because they make life easy for themselves - and part of
making life easy is making sure that you can work out what the code is doing a year
from now.

The language lends itself well to bottom-up coding. Like the choice of word names,
this can be a double-edged sword. There is no substitute for good overall program
design, which can only be done properly from the top down. Bottom-up design and
coding is excellent, however, for exploring the nuts and bolts of techniques,
algorithms, and low-level interfaces. The ability to interactively create, test, and
produce working code early in the development cycle is invaluable. Early working
code also helps to keep your boss off your back, and it enables customers to make
sensible reactions and discover specification errors before it is too late. Carefully used
this feature can save you a great deal of time.

Bottom-up coding has an additional advantage in that it is easy to test with the Forth
interpreter. Since you cannot use a word until all its components have been defined,
you simply test an application in the order of the source code. Each component that
you test is then based on previously tested code. This is a much more reliable strategy
than testing by running the completed application.

You may well find it profitable to study the source code of the programs supplied in
the files with your Forth as a guide to style. The style is the one we use, and has
evolved over a number of years, rather than through any theoretical arguments. We
find it usable by both the authors and those who have to read other people's code. Read
the glossary documentation, and spend a while trying out the functions, and observing
their action on the stack.

Editors
Forth source code is usually held in regular text files. You can use your programming
editor of choice. Forth syntax colouring files are available for many of them. The
MPE Forth layout standard discusses MPE practice for laying out source code.

The earlier ‘screen’ or ‘block’ layout of Forth source code is now obsolete except for
special use, mostly on embedded systems or for legacy reasons. Block editors are
discussed in the chapter on legacy issues.

Introduction

6

Forth Implementation
As with all computer languages, Forth has evolved over time. This book assumes the
use of an ANS Forth which conforms to the ANS Forth standard published in 1994.
At the time of writing in 2005, the ANS Forth standard is the most widely used.

Modern Forth implementations usually generate optimised native code, and the good
ones produce code of the same quality as the good C compilers. For those CPUs in
the embedded world where code density is more important than performance,
threaded code (interpreted code) implementations are still used, often with limited
peephole optimisation.

The different implementation strategies are discussed in the Forth internals chapter.

MPEisms
Because this book was written at MPE using MPE’s VFX Forth for Windows for
testing the code, it inevitably suffers from the use of a few idioms which are specific
to MPE’s implementations. I have tried to avoid these and where appropriate they are
marked. For example,

MPEism: MPE implementations of Forth do not care about the case of characters in
Forth word names. CAT is the same as cat is the same as Cat. Embedded comments
may be as long as you wish without a space or speed penalty in the compiled code.

7

2 Architecture of Forth

Most programming languages, including C, have an underlying architecture or model
of the computer. This is often called the language’s virtual machine (VM),
regardless of how the final binary code is produced.

This chapter includes some details which you do not need to appreciate fully to use
Forth, but are described here because they are a consequence of the architecture of
Forth. You can always come back to these later.

Forth Virtual Machine
Classical or canonical Forth views the world as a CPU connected to main memory
and two stacks. The stacks are not addressable, and are quite separate from main
memory. C views the world as a CPU connected to memory, which includes a list of
frames (usually a stack of frames) which must be in addressable memory.

CPU

Main Memory

Data
Stack

Return
Stack CPU

Main Memory
including

Frame Stack

Forth VM C VM

Figure 2: Forth and C Virtual Machines

MPEism: By adding the necessary registers for the frame stack to the canonical
Forth machine, we can support local variables in Forth and C-isms needed to
interface efficiently to operating systems with C and Pascal calling conventions. This
model is called the SENDIT virtual machine after the project which developed it.

Architecture of Forth

8

The SENDIT VM looks remarkably similar to other stack machine CPUs derived
from a Forth architecture and designed to execute C efficiently.

Several implementations of dual stack architectures have been produced in silicon for
use in hard real-time embedded systems, for which the best definition comes from
Bernd Paysan - “Late answers are wrong answers”. On some occasions early answers
are also wrong answers.

Because dual-stack processors have very few registers, interrupt response is
excellent. A 10 MHz RTX2000 has an interrupt response of four cycles, 400ns, and
we have seen a video application with a 1 MHz (not a typo) interrupt rate. Because of
this, stack CPUs with apparently low clock rates are used in specialised application
areas.

Stacks and postfix notation
Forth contains two stacks, one for storing return addresses (what was I doing
last/where do I go back to?), and one for storing data. The first stack is called the return
stack, and the second is called the data or parameter stack. Where we just refer to “the
stack” we nearly always mean the data stack, as this is the one the programmer uses
most.

The return stack holds the return addresses of all the words that have been called, but
have not yet been left. The return stack is also used for storing temporary data that
would only get in the way if kept on the data stack. This sort of data includes loop
limits and indices, and data taken off the data stack to reduce the amount of stack
manipulation that would otherwise occur. There is a set of words used for transferring
data between the stacks.

The data stack is an efficient method of passing data between the words that make up a
Forth program. Any word that needs data takes it from the top of the stack, and puts
any results back on top of the stack. The word .S can be used to display the contents
of the stack without destroying them. It is a useful debugging tool. Nearly all modern
processors provide for the use of stacks, so stack operations are very fast.

CPU

Main Memory
including

Frame Stack

Data
Stack

Return
Stack

SENDIT VM and registers

PC = program counter
PSP = parameter stack pointer

RSP = return stack pointer

FP = frame pointer
FEP = frame end pointer

Figure 3: Sendit VM and registers

Architecture of Forth

9

By keeping parameters and temporary data on the data stack, the return stack is not
affected by the number of items passed into or returned from a function (word). This
means that the C equivalent of varargs is efficiently handled, and also that a function
can efficiently return more than one item without resorting to pointers and temporary
data structures. Consequently, words that return more than one item are common in
Forth.

Because stacks are used for data handling, the use of postfix, or Reverse Polish
Notation (RPN), is very suitable. In this form of writing arithmetic expressions,
operands (the data used) come before the operators (how you use the data), for
example:

The normal algebraic notation :-

 at**2 + bt + c

is better expressed for computer evaluation as :-

 (at + b)t + c

which is then expressed in Reverse Polish Notation (RPN) as :-

 a t * b + t * c +

Notice that the use of brackets becomes unnecessary. This is because of the use of the
stack to hold intermediate results. Although the use of a stack is intimidating at first,
after a while it becomes natural, and eventually it is only noticeable on rare occasions.
Remembering that the word . is used to print what is on the top of the stack you can
try a few bits of arithmetic.

1 2 + .
4 5 * .
9 3 / .
1 2 + 3 * .
1 2 3 + * .
1 2 3 * + .

Nearly all Forth words remove their data from the top of the stack, and leave the result
behind. Words like + and * remove two items, and leave one behind. There is a Forth
word .S which prints out the contents of the stack without destroying the contents. Use
it whenever you want to see what is on the stack. So far, we have executed words by
typing their names at the keyboard.

Data types
Forths are often characterised by the size of an item on the data stack, which is
usually 32 bits or 16 bits. Several 64 and 8 bit Forths also exist, as well as 4, 20 and
24 bit systems. Forth is an untyped language, so there is nothing to stop you adding a
character to a number. No casts are necessary. The amount of memory needed to
store a stack item is called a cell.

Words that operate on stack items will just assume that the data is appropriate. Most
Forth compilers do not check the data types at all.

An integer occupies a single cell on the stack, as does an address. If you need larger
integers, use a double integer which occupies two cells on the data stack, most
significant half topmost.

A character is smaller than (or the same size as) an integer, and is zero extended to
fill a cell.

Architecture of Forth

10

Two different floating point implementations are described by the ANS standard. In
one, known as a separated float stack, floating point numbers are held on a separate
stack reserved for floating point numbers. Floating point operations that require
integer parameters take them from the data stack. The second form uses a combined
stack, in which floating point numbers share the data stack.

Words and Numbers
All text entered to Forth is treated either as a number (literal, e.g. 1234) or a word
(function). A unit of text is separated by spaces or line breaks. These units are either
interpreted or compiled. That’s all. Although this is a very simple process, it is a key
to the use of Forth.

Interpreting and compiling
Forth contains both an interpreter and a compiler. Interpreting means taking the text
fed in, converting it into a form the machine can execute, executing that form, and then
discarding the executable form.

Compiling means taking the input text, completely converting it into a machine
executable form, keeping the executable form, and discarding the text. This can
produce a program that runs very fast, but you cannot change anything without first
editing the source text, then compiling it (using a separate program called a compiler),
and then loading the executable code when you want to run it.

Any text fed to Forth, either from the keyboard or from mass storage, is executed or
compiled. Remember, all commands to Forth are pre-defined 'words' in its
'vocabularies', consequently Forth can look up the address of a given word for later
execution. Some words in Forth change the way the compiler section deals with text.

For instance we could define a word that squares the value given to it.

: squared (n1 -- n1^2)
 dup * ;

The address of the word : is found and : is executed; the action of : is to tell the
compiler section to start defining a new word whose name comes next, squared, and
then compile into the new word the actions of the words that follow. This would carry
on for ever unless we had a way of stopping it, and this is provided by 'immediate'
words such as ; which are always executed, regardless of what the compiler would
otherwise be doing.

The action of ; is to stop the compiler compiling word addresses, and return it to the
mode of executing the addresses instead. There are other words (defining words) which
are used to create words such as : - these are one of the keys to advanced use of Forth.
At all times remember, however, that the basis of Forth is always very simple. Forth is
a language built from a number of very simple ideas, rather than one founded on a few
complex systems.

Defining Words and Immediate words
Some words such as : in the previous section, are called defining words, because they
are used to define new words (squared in the previous section); these words are one
of the keys to the power of Forth. The word : creates a new word in the dictionary and
switches Forth from being an interpreter to being a compiler. Any word names met
from now on will not be executed, but will be found and compiled into the dictionary.
This process repeats until stopped, but it can only be stopped by the execution of

Architecture of Forth

11

another word, and all words are being compiled, not executed. This problem is dealt
with by immediate words.

The solution to the problem of the previous section is to have a class of words which
are always executed, regardless of whether Forth is supposed to be compiling. Such
words are called immediate words. The word ; used to terminate a high level
definition, is an example of such a word. When it executes it switches Forth from being
a compiler back to being an interpreter, and also compiles the action of the word EXIT
which performs the function of returning from a high level word.

Factoring
Factoring is the term Forth programmers use for splitting complex functions into
several smaller ones. It is a key activity in writing good Forth. It is also a key reason
why well-written Forth programs tend to be smaller than those written in many other
languages. Forth promotes code reuse at a fine-grained level.

Because of the two-stack virtual machine, the performance and code size overheads
of factoring are very low. They are outweighed by the benefits of easy code reuse,
which improves code size, reliability and maintainability. Code size is reduced
because code is called rather than repeated (call by text editor). Reliability is
improved because small code is easier to test if it only occurs once. Maintainability is
improved if code is simple and only occurs once. If code only occurs once and has no
side effects such as modifying variables, it can be completely rewritten with
confidence providing that the stack effect remains the same.

From the point of view of C programmers learning Forth, this emphasis on factoring
appears strange. When I go back to programming in C, I find my exposure to Forth
and factoring benefits my C code. It has been said that there are three types of
procedure call:

1) call by value

2) call by reference

3) call by text editor

Call by text editor is not good practice in any language, yet I am constantly amazed
by the number of two and three line code units in C programs that are repeated again
and again. Repeated code units still need testing and maintenance.

An additional benefit of factoring is that each unit is simpler, usually with fewer
items on the stack, and hence easier and faster to program. Programmers new to
Forth will find factoring eases the learning curve. As it has big benefits factoring is a
habit to be encouraged.

13

3 How Forth is documented

Comments
Forth has two primary comment words. You can put text between round brackets –
parentheses. There must be a space after the opening parenthesis:

(<comment>)

anywhere in your source code. A comment to the end of the line is started by a
backslash used as a word:

 <code> \ <comment>

If you want to display messages while a file is being compiled by

INCLUDE <filename>

You can use the word .(which behaves like the (comment but displays the text.

.(This is displayed during compilation)

Stack comments
Words in this book are documented in a style popular with many Forth programmers. It
shows what is on the stack before the word executes (the input), and what is on the
stack after the word has executed (the output). The top of the stack is right of the
group, and the execution point is marked by two dashes.

The multiply operator * takes two parameters on input, and leaves one on output. It is
thus shown:

 (n1 n2 -- n3)

or

 \ n1 n2 -- n3

The round brackets are Forth's way of marking a comment, and n2 is the top of the
stack before execution. In the manual Forth words are written in capital letters to
distinguish them from the lower case letters of the rest of the text. It does not matter
which you use in your programs. Personally, I prefer the look of programs written in
lower case. All children are taught to read using lower case letters. All keyboards are
marked in upper case, even those for use by children!

Notation
Data items are described using the following notation

OPERAND DESCRIPTION
n1,n2.. signed numbers (integers)
d1,d2.. double precision signed numbers
u1,u2.. unsigned numbers (integers)
ud1,ud2.. double precision unsigned numbers
addr1.. address
b1,b2.. bytes
c1,c2.. ASCII characters
char1,char22.. ASCII characters

How Forth is documented

14

t/f,t,f boolean flag, true, false
0=false, nz=true,

flag 0=false, -1 =true

Note that the ANS standard uses f for a flag, whereas many programmers still use t
and f to indicate true and false.

15

4 First words in Forth

The only sure way to learn Forth is to use it. Forth programmers spend more time at the
terminal, because the interactive nature of the language means that words can be tested
as soon as they are entered. A result of this feature is that succeeding words, which use
previous ones, use tested code. Adherence to the procedure of `top down design',
followed by `bottom up' coding and interactive testing, leads to very rapid debugging,
and successful program generation. Audits of large software projects reveal that over
half the time may be spent on debugging. As this is the largest single activity, it is the
one to reduce. If you are at all interested in software management, do read Fred
Brook's book, 'The Mythical Man-Month'.

 To write new words you can either just type them in at the keyboard, or you can use
the editor to put source code in a file.

If you decide just to enter the examples directly, you do not need to enter the comments
or use the same layout. In fact Forth is completely free-form. This means that the
position of the words is unimportant, only their order.

MPEism: MPE Forths do not care whether a word is in UPPER CASE or in lower
case or in MiXeD case.

Forth word names can contain any characters except spaces or nulls (ASCII character
0). It is sensible to use printable characters, but Forth does not actually check the
characters.

New Forth words are defined by the word : whose first action is to pick up the name
that follows and use it to make a new entry in the dictionary. Then, everything that
follows up to the next ; defines the action of the word.

By comparison with extended BASICs : is equivalent to DEFine PROCedure or
DEFine FuNction and ; is equivalent to END PROCedure or END DEFine. For
example:

: NEW-NAME \ --
 CR ." This is a new word" CR ;
NEW-NAME

The example word above is called NEW-NAME - when you type NEW-NAME it will
print a new line, and the print the text `This is a new word', and then print another new
line. The word ." prints out all the characters except the space after ." up to but not
including the next double quotation mark ("). The word CR is a predefined word that
generates a new line - CR stands for Carriage-Return.

A new Forth word can contain any words that exist in the dictionary. The new Forth
word can be executed by typing its name, or included in the definition of another word.

: TIMES \ n1 n2 --
 * . ;
2 4 TIMES

This example will multiply two numbers together and print the result. The word * is
Forth's multiply word, and . is the word to print a number. TIMES can be used as part
of a word that presents information more prettily to the user. First we print a new line
using CR then we duplicate the two numbers using 2DUP and print them out together
with the result. Why is the word SWAP used? Try it without SWAP.

First words in Forth

16

: MULTIPLY (n1 n2 --)
 CR 2DUP SWAP . ." multiplied by " .
 ." equals " TIMES CR ;
4 3 MULTIPLY

We have shown the definition entered on two lines. When you type it in there will be
no 'ok' prompt after the first line. This is because you have not finished the definition.
The Forth system has converted the list of word names into a dictionary entry called
MULTIPLY and its associated code. This process is called compilation, and during
compilation source text entered from the keyboard is discarded.

If you want to keep source code available for re-use, use your standard text editor, save
the file, conventionally with a .FTH extension, and use the word INCLUDE to load it,
e.g.

INCLUDE MULTIPLY.FTH

which will compile it just as if you had entered the text at the keyboard. INCLUDEs
can be nested inside other files. Many Forth programmers compile big applications by
compiling a control file which just includes other files. On many systems you can find
the source code of a word by typing:

LOCATE <name>

You can also often see what was compiled using one of the following:

DIS <name>
SEE <name>
VIEW <name>

Suppose we had a section of a program that had to greet people. First, we could define
a word to say 'hello'. We use a dot at the beginning of the name because it is a Forth
convention that words which print start with a dot. We use : to start a definition
(followed by its name) and ; to end it.

: .HELLO \ -- ; has no effect on the stack
 ." Hello " ;

If you now type .HELLO <ENTER>, Forth will respond, followed by `ok' to show that
there were no errors in the last entry. We now need some words to print out the names
of the people we want to greet.

(--)
: .FRED
 ." Fred " ;
: .MARY
 ." Mary " ;
: .NEIL
 ." Neil " ;
: .LINDA
 ." Linda " ;

We will also need a word to link these together.

: .AND \ --
 ." and " ;

We can now define a word to greet all these people. Forth words can occupy as many
lines as are needed. You can use line breaks and additional spaces to emphasize the
phrasing of the word.

First words in Forth

17

: .GREET \ --
 .HELLO .MARY .AND .FRED
 .AND .LINDA .AND .NEIL CR ;

When you type .GREET <ENTER>, Forth will respond -

Hello Mary and Fred and Linda and Neil ok

At some stage you will want to see what words are in the dictionary, to do this enter:

WORDS

You will see a long list of words roll past. You can stop the listing by pressing the
space bar. Press it again and the listing will continue. Press any other key, and the
listing will finish. All the names you see are the names of predefined words in Forth,
plus any that you have created. All these words are available for you to use, and the
predefined ones are documented later in this manual. The words that you write will use
these words as their basis.

The secret of writing programs in Forth is to keep everything simple. Remember the
KISS method (keep it simple, stupid). Simple things work, and complicated things can
be built out of simple things. A programmer's job is to decide what those simple things
should be, and then to design and code them. If the names of the words reflect what
they are to do, then the code will be readable and easy to follow. The next sections give
an introduction to the components of Forth, and a description of the program control
structures available.

19

5 Components of Forth

Only the words needed for this book are documented here. Most Forths have many
more. An HTML version of the last publicly available ANS Forth document, which
is very close to the final standard, is provided on the CD supplied with this book.
Start with DPANS.HTM.

Data stack operations
Learning any new language involves some grunt work. In Forth, much of this grunt
work involves learning how to manipulate items on the data stack. To quote
Elizabeth Rather:

“Development of good stack management skills is a core component of Forth
practice, and a key to enjoying its benefits. If you regard the stack as a nuisance or
an impediment, you're missing the whole point.”

By convention the top item of the data stack is called TOS and second item is called
NOS. You may also see the terms 3OS and 4OS in some code.

DUP \ x -- x x
DUPlicate the top stack item.

?DUP \ x -- 0 | x x
DUPplicate the top stack item only if it is non-zero. Nearly always used before
a conditional branch.

DROP \ x --
Discard the top data stack item and promote NOS to TOS.

SWAP \ x1 x2 -- x2 x1
Exchange the top two data stack items.

OVER \ x1 x2 -- x1 x2 x1
Make a copy of the second item on the stack.

NIP \ x1 x2 -- x2
Dispose of the second item on the data stack.

TUCK \ x1 x2 -- x2 x1 x2
Insert a copy of the top data stack item underneath the current second item.
Equivalent to SWAP OVER.

ROT \ n1 n2 n3 -- n2 n3 n1
ROTate the positions of the top three stack items such that the current top of
stack becomes the second item.

-ROT \ x1 x2 x3 -- x3 x1 x2
The reciprocal of ROT. Non ANS, but widely available.

Components of Forth

20

PICK \ xu .. x0 u -- xu .. x0 xu
Get a copy of the Nth data stack item and place on top of stack. 0 PICK is
equivalent to DUP, 1 PICK to OVER and so on.

2DUP \ x1 x2 -- x1 x2 x1 x2
DUPlicate the top cell-pair on the data stack.)

2DROP \ x1 x2 --
Discard the top two data stack items.

2SWAP \ x1 x2 x3 x4 -- x3 x4 x1 x2
Exchange the top two cell-pairs on the data stack.

2OVER \ x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2
Copy cell pair x1 x2 to the top of the stack.

Return Stack operations
>R \ x -- ; R: -- x

Push the current top item of the data stack onto the top of the return stack.

R@ \ -- x ; R: x -- x
Copy the top item of the return stack and place on the data stack.

R> \ --x ; R: x --
Pop the top item off the return stack and place on the data stack.

2>R \ x1 x2 -- ; R: -- x1 x2
Push the current top cell pair from the data stack onto the return stack.

2R@ \ -- x1 x2 ; R: x1 x2 -- x1 x2
Copy the top cell pair of the return stack and place on the data stack.

2R> \ -- x1 x2 ; R: x1 x2 --
Pop the top cell pair from the return stack and place on the data stack.

Maths operations
+ \ n1|u1 n2|u2 -- n3|u3

Add two single precision integer numbers: n3=n1+n2.

- \ n1|u1 n2|u2 -- n3|u3
Subtract two single precision integer numbers: n3=n1-n2.

* \ n1 n2 -- n3
Standard signed multiply: n3 = n1 * n2.

/ \ n1 n2 -- n3
Standard signed division operator: n3 = n1/n2.

MOD \ n1 n2 -- n3
Standard signed division operator returning the remainder: n3 = n1 mod n2.

Components of Forth

21

UM* \ u1 u2 -- ud3
An unsigned multiply that produces an unsigned double result.

*/ \ n1 n2 n3 -- n4
Multiply n1 by n2 to give a double precision result, and then divide it by n3
returning the quotient. The point of this operation is to avoid loss of precision.
The ANS standard permits systems to restrict n3 to positive numbers. This
word is ideal for scaling operations, e.g. after reading an analogue to digital
converter or converting radians to degrees.
: PI \ n –- n*pi
 355 113 */
;

UM/MOD \ ud u -- urem uquot
Perform unsigned division of double number ud by single number u and return
the remainder and quotient. In most CPU architectures that have divide
operations, the remainder is produced at the same time as the quotient. Note
that the dividend is a double number. Often used in conjunction with UM* for
scaling operations that take advantage of an intermediate double result to
preserve precision.

NEGATE \ n1 -- n2
Negate a single precision integer number.

ABS \ n -- u
If n is negative, return its positive equivalent (absolute value).

MIN \ n1 n2 -– n1|n2
Return the lesser of n1 and n2.

MAX \ n1 n2 -– n1|n2
Return the greater of n1 and n2.

Comparisons
In Forth there is no basic boolean type. The stack value 0 (all bits clear) is taken to
represent FALSE, while any other value is taken to represent TRUE. The stack
notation flag indicates a “well formed flag” which means that a TRUE value is
represented by all bits set, which corresponds to the number –1 for most CPUs.

< \ n1 n2 -- flag
Returns true if n1<n2

> \ n1 n2 -- flag
Returns true if n1>n2

U< \ u1 u2 -- flag
Unsigned, returns true if u1<u2

U> \ u1 u2 -- flag
Unsigned, returns true if u1>u2

= \ n1 n2 -- flag
Returns true if n1=n2

Components of Forth

22

<> \ n1 n2 -- flag
Returns true if n1 not equal to n2

0= \ x1 -- flag
Returns true if x1=0.

0<> \ x1 -- flag
Returns true if x1 is not equal to 0.

WITHIN \ n1|u1 n2|u2 n3|u3 -– flag
Return TRUE if n2|u2 <= n1|u1 < n3|u3. Note the conditions. This word uses
unsigned arithmetic, so that signed compares are treated as existing on a
number circle.

Widely available
<= \ n1 n2 -- flag

Returns true if n1<=n2

>= \ n1 n2 -- flag
Returns true if n1>=n2

Bitwise logic
AND \ n1 n2 -- n3

Returns n3 = n1 AND n2

OR \ n1 n2 -- n3
Returns n3 = n1 OR n2

XOR \ n1 n2 -- n3
Returns n3 = n1 XOR n2

INVERT \ n1 -- n2
Returns bitwise inverse of n1.

LSHIFT \ x1 u -- x2
Logically shift x1 by u bits left.

RSHIFT \ x1 u -- x2
Logically shift x1 by u bits right.

Memory operations
In Forth terminology items in memory that are the same size as items on the data
stack are called cells. The width of the stack is usually determined by the underlying
CPU architecture, being 16 bits on 16 bit CPUs, 32 bits on 32 bit CPUs and so on.
For byte-addressed CPUs (the majority), a character is a byte and bytes in an array
are stored at consecutive addresses.

@ \ addr -- n
Fetch and return the cell at memory address addr.

Components of Forth

23

! \ n addr --

Store the cell quantity n at memory address addr.

+! \ n addr --
Add n to the cell at memory address addr.

c@ \ addr -- char
Fetch and zero extend the character at memory address addr.

c! \ char addr --
Store the character char at memory address addr.

CELLS \ n1 -- n2
Returns n2, the memory size required to hold n1 cells. CELLS improves
portability and readability.

CHARS \ n1 -- n2
Returns n2, the memory size required to hold n1 characters. CHARS improves
portability and readability.

Widely available
w@ \ addr -- val

Fetch and zero extend the 16 bit item at memory address addr. Usually only
found on 32 and 64 bit systems.

w! \ val addr --
Store the 16 bit item val at memory address addr. Usually only found on 32
and 64 bit systems.

Constants and variables
Many times in a program we need to use a value to represent something, a type of
flower, or a bus route number. On other occasions the value corresponds to an actual
value rather than an association, the price of roses today, the ASCII code for a special
key. Some of this data never changes; it is constant. Other data changes from day to
day or minute to minute. The two types of data are created by CONSTANT,
VARIABLE and VALUE. Naming data makes programs easier to write and read, as
people remember names more easily than numbers.

CONSTANTs
Constants are used when the data will not change, or will only be changed when the
programmer edits the program (for instance, to change a control key). Constants return
their value to the stack.

DECIMAL \ all numbers are in decimal
(-- n)
13 CONSTANT ENTER-KEY
1 CONSTANT DAFFODIL
2 CONSTANT TULIP
3 CONSTANT ROSE
4 CONSTANT SNOWDROP

Components of Forth

24

VARIABLEs
In Forth a variable is named and set up by the word VARIABLE.

(-- addr)
VARIABLE FLOWER

At this stage a variable called FLOWER has been declared with an initial value of 0 on
most systems. The ANS standard does not mandate a specific initial value. When you
use FLOWER the address of the data is given. Forth uses @ ('fetch') to fetch the data
from the address, and ! ('store') to store data into an address. If a specific initial value is
needed we can change it.

DAFFODIL FLOWER !

Later on in a program we can use the value of FLOWER to change the way the program
acts. Part of the program might be about to draw the flower, and we need to set the
colour properly.

: DAFF \ --
 FLOWER @ DAFFODIL =
 IF YELLOW INK THEN ;

To make a program wait until the ENTER key is pressed, you can try the code below.

: WAIT-ENTER \ -- ; wait for <CR>
 BEGIN KEY ENTER-KEY = UNTIL ;

In most words data is passed from word to word using the stack. If you find the stack
usage getting too complex, try splitting the word into other words which only use one
or two items on the stack. On other occasions you will find that all the words need to
refer to the same value which controls what happens on this run of the program (say,
the type of flower). In these cases the use of a variable is appropriate. As your Forth
skills improve, you will find that you use fewer variables.

VALUEs
The word VALUE creates a variable that returns its contents (value) when referenced,
and is widely used for variables that are mostly read and rarely changed. A VALUE
is defined with an initial value.

 55 VALUE FOO

In embedded systems, you can rely on a VALUE being initialised at power up,
whereas the ANS specification does not require VARIABLEs to be initialised. You
get the contents of a VALUE by referring to it, but you set it by prefixing it with the
word TO.

: test \ n --
 cr .” The value of FOO was “ foo .
 to foo
 .” and is now “ foo .
;

Control structures
A control structure is one that allows you to control the way a program behaves
depending on the value of some piece of data you have previously calculated. This
gives a program the power of choosing to do this if one thing happens, or that if
another thing happens. Control structures in Forth allow execution and looping

Components of Forth

25

determined by values on the stack. Although the user is not necessarily aware of it,
control structures are usually implemented by means of words that execute at compile
time (immediate words), and compile other words that actually execute at run time.
Techniques like these allow error checking to be implemented as well. Control
structures must be used inside a colon definition; they cannot be directly executed from
the keyboard. Any one structure must be written entirely within one definition; you
cannot put the IF in one word and the THEN in another. Control structures can be
nested inside one another, but they must not overlap.

Although it is possible to write loops and control structures that return a variable
number of items on the stack, this practice leads to errors and is not recommended.

IF ... THEN
flag IF <true words> THEN

The flag on the top of the stack controls execution. If the flag is non-zero (true), the
words between IF and THEN are executed, otherwise they are not.

Like most Forth words IF consumes the flag used as input to it. If the value of the flag
must be used again it can be duplicated by DUP. In the case of IF THEN, where the
value may only be needed between IF and THEN, the use of ?DUP, which only
duplicates a number if it is non-zero, may be more appropriate.

: TEST \ flag --
 IF ." top of stack is non-zero " THEN ;
1 TEST top of stack is non-zero ok
0 TEST ok

IF...ELSE...THEN
flag IF <true words> ELSE <false words> THEN

This structure behaves just like IF ... THEN above except that an alternate set of words
will execute when the flag is false (zero).

: TEST \ flag
 IF ." top of stack is non-zero "
 ELSE ." top of stack is zero "
 THEN
;
1 TEST top of stack is non-zero ok
0 TEST top of stack is zero ok

EXIT
EXIT causes a return from the current definition. Before using EXIT you must
ensure that the data stack is correct and that anything you put on the return stack with
>R has been removed. EXIT is often used when an error check fails.
: FOO \ a b c – result
 TEST1
 IF DROP 2DROP <errcode1> EXIT THEN
 TEST2
 IF DROP 2DROP <errcode2> EXIT THEN
 ...
 0 \ for success
;

Components of Forth

26

DO ... LOOP and DO ... n +LOOP
limit index DO <loop words> LOOP

limit index DO <loop words> <increment> +LOOP

This structure is very roughly the same as BASIC's FOR X=1 TO 10....NEXT.

To use this structure, place the limit value and the starting value of the loop index on
the stack. DO will consume this data and transfer it to the return stack for use during
execution of the loop. LOOP will add one to the index and compare it to the limit. If
the index is still less than the limit the loop will be executed again. As a result of this
the limit value is never used. +LOOP behaves in the same way except that the
increment on the stack is added to the index.

You can get out of the loop early with the words LEAVE or ?LEAVE.

LEAVE (--) cleans up the return stack, and execution then resumes after the
LOOP or +LOOP. Note that words between LEAVE and LOOP or +LOOP are not
executed.

?LEAVE behaves like LEAVE except that the loop is left only if the top of the stack is
non-zero. This is a useful word when checking for errors. This word is non-ANS but is
widely available. It is equivalent to IF LEAVE THEN.

DO ... LOOP structures may be nested to any level up to the capacity of the return
stack. The index of the current loop is inspected using I (-- n). The index of
the next outer loop is inspected using J (-- n).

If you need to terminate the loop early and get out of the current word by using EXIT
(see above) the code will not pass through LOOP or +LOOP. In this case you must
remove the loop control information using UNLOOP (--). The following word
polls the keyboard every 100 milliseconds for one second. It returns a key code
immediately if a key is pressed, or returns a zero after one second if no key has been
pressed.
: TESTKEY \ -- char|0
 10 0 DO \ ten times
 KEY? IF \ true if char
 KEY \ get character
 UNLOOP EXIT \ clean up and get out
 THEN
 100 MS \ wait
 LOOP
 0 \ no key
;

WATCH OUT -

If you use the return stack for temporary storage after DO, you must remove it before
LOOP or +LOOP.

If there is data on the return stack I and J will return incorrect values.

The loop will always be executed at least once. If you do not want this to happen you
must add extra code around the loop or use ?DO , which only executes if the limit is
not the same as the index.

Example:

Components of Forth

27

: TEST \ -- ; display numbers 1..9
 10 1 DO I . LOOP ;
TEST<cr> 1 2 3 4 5 6 7 8 9 ok
: TEST2
 10 1 DO I . 3 +LOOP ;
TEST2<cr> 1 4 7 ok

WATCH OUT -

: TEST3 \ -- ; display 9..0 in descending order
 0 9 DO I . –1 +LOOP ;
TEST3<cr>9 8 7 6 5 4 3 2 1

When the loop increment is negative, DO…+LOOP will include an iteration with the
limit. This occurs because the loop test is dependent on the CPU overflow flag.

?DO ... LOOP and ?DO ... n +LOOP
limit index ?DO <loop words> LOOP
limit index ?DO <loop words> increment +LOOP

These structures behave in the same way as DO ... LOOP and DO ... n +LOOP except
the loop is not executed at all if the index and the limit are equal on entry. For example
if the word SPACES which prints n spaces is defined as:

: SPACES \ n --
 0 DO SPACE LOOP ;

the phrase 0 SPACES causes 65536 spaces to be displayed on a 16 bit system (2^32
spaces on a 32 bit system), whereas the definition below displays no spaces.

: SPACES \ n --
 0 ?DO SPACE LOOP ;

BEGIN ... AGAIN
BEGIN <words> AGAIN

This structure forms a loop that only finishes if an error condition occurs, or a word
such as THROW, ABORT or QUIT (see later) is executed. The first example will read
and echo characters from the keyboard forever, the second will exit when the ENTER
key is pressed.

Example:

: TEST \ -- ; runs forever
 BEGIN KEY EMIT AGAIN ;

DECIMAL
: TEST2 \ -- ; runs until CR pressed
 BEGIN KEY DUP 13 =
 IF ABORT THEN \ could use EXIT
 EMIT
 AGAIN ;

BEGIN ... UNTIL
BEGIN <words> flag UNTIL

This structure forms a loop which is always executed at least once, and exits when the
word UNTIL is executed and the flag (on the data stack) is true (non-zero). If you

Components of Forth

28

need to use the terminating condition after the loop has finished use ?DUP to duplicate
the top item of the stack if it is non-zero.

BEGIN ... UNTIL loops may be nested to any level.

Example:

: TEST
 BEGIN KEY DUP EMIT 13 = UNTIL ;

BEGIN ... WHILE ... REPEAT
BEGIN <test words> flag WHILE <more words> REPEAT

This is the most powerful and perhaps the most elegant (though certainly not some
purists’ choice) of the Forth control structures. The loop starts at BEGIN and all the
words are executed as far as WHILE. If the flag on the data stack is non-zero the
words between WHILE and REPEAT are executed, and the cycle repeats again with
the words after BEGIN.

This structure allows for extremely flexible loops, and perhaps because it is somewhat
different from the structures of BASIC or Pascal, this structure is often somewhat
neglected. It does however, repay examination. Like all the structures it can be nested
to any depth, limited only by stack depth considerations. In the example below, the
console is polled until a key is pressed, and a counter is incremented while waiting.

VARIABLE COUNTER
: TEST \ --
 0 COUNTER !
 BEGIN KEY? 0=
 WHILE 1 COUNTER +!
 REPEAT ;

CASE ... OF ... ENDOF ... ENDCASE
CASE key
 value1 OF <words> ENDOF
 value2 OF <words> ENDOF
 ...
 <default words> (otherwise clause)
ENDCASE

This is the most common CASE statement in Forth. It is the result of a competition for
the best CASE statement. The competition was run by Forth Dimensions, the journal of
the Forth Interest Group (FIG) in the USA. A large number of CASE statements were
proposed, but this one has stood the test of time as it is secure, easy to use and
understand, and easy to read. It was invented by Dr. Charles E. Eaker, and first
published in Forth Dimensions, Vol. II number 3, page 37.

CASE statements exist to replace a large chain of nested IFs, ELSEs, and THENs.
Such chains are unwieldy to write, prone to error, and lead to severe brain-strain.

The function of a CASE statement is to perform one action dependent on the value of
the key passed to it. If none of the conditions is met, a default action (the otherwise
clause) should be available. Note that a value to select against must be available before
each OF against which the entered parameter may be tested. The select value is top of
stack, the parameter is next on stack (by requirement); OF then compares the two
values, and if they are equal, the words between OF and ENDOF are executed, and the
program continues immediately after ENDCASE. If the test fails, the code between OF

Components of Forth

29

and ENDOF is skipped, so that the select value before the next OF may be tested. If all
the tests fail the parameter is still on the data stack for the default action, and is then
consumed by ENDCASE. Additional control structures can be used inside OF ...
ENDOF clauses.

Example:

: STYLE? (n --)
 CASE
 1 OF ." Mummy, I like you" ENDOF
 2 OF ." Pleased to meet you" ENDOF
 3 OF ." Hi!" ENDOF
 4 OF ." Hello" ENDOF
 5 OF ." Where's the coffee" ENDOF
 6 OF ." Yes?" ENDOF
 ." And who are you?"
 ENDCASE ;

The phrase:

n STYLE?

will select an opening phrase according to the value of n. If n is in the range 1..6 a
predefined string is output, for any other number the default phrase 'And who are you?'
is output. Case statements are often used to select actions based on ASCII characters.
In an editor sections of code like the one below are often found.

CASE
 KEY
 [CHAR] I OF INDEX ENDOF
 [CHAR] M OF MOVE-BLOCK ENDOF
 [CHAR] D OF DIRECTORY ENDOF
 ...
ENDCASE

MPEisms: CASE extensions
In order to extend the usefulness of the basic CASE structure we have added three
extensions to the standard Eaker CASE.

The first ?OF allows the use of a logical test rather than equality. If you need to test
whether or not a character is in the right range the following replaces a large number of
OF ... ENDOF sets. The word WITHIN? returns a true value if the value is between (or
equal to) the lower and upper limits. ?OF consumes the flag given to it.

DUP 32 127 WITHIN? ?OF ... ENDOF

The second extension END-CASE behaves just like ENDCASE, except that it does not
DROP anything from the stack, so allowing a default clause to consume the select value
without having to DUPlicate it.

The third extension NEXT-CASE compiles a branch back to the CASE, so producing a
loop that exits via one the OF ... ENDOF or ?OF ... ENDOF phrases. Such a
loop performs a different exit action for each condition. The intention of this structure
is to allow a formal method of constructing loops with more than one exit and exit
action. Such loops are often necessary when dealing with text entry. NEXT-CASE
consumes no data.

Example:

Components of Forth

30

CASE KEY
 13 OF <cr action> ENDOF
 10 OF <lf action> ENDOF
 DUP 32 127 WITHIN?
 ?OF <normal action> ENDOF
 CR ." Character code " . ." is invalid" CR
NEXT-CASE

Restarts and errors
Exception handling is covered in more detail in a separate chapter. The BEGIN ...
AGAIN example above uses ABORT, which usually performs a warm restart of the
system, but is implementation dependent. Conventionally, ABORT resets the stacks
and runs the Forth interpreter loop in QUIT.

Text and strings
There are not many words in a standard Forth that deal with strings, but they do allow
the user to build words that will perform any required function. Two types of strings
are defined, which I shall call counted and character. Forth systems interfacing to
operating systems and C libraries also provide words to use zero-terminated strings.
Applications that operate on large blocks of text and/or are internationalised use wide
or Unicode strings as well.

Historically, Forth systems mainly used counted strings, which consist of a count
byte followed by that many characters. They are referenced by the address of the
count byte (-- caddr). This is the same structure as used by many Pascal
implementations. Counted strings are fast to manipulate because their length is
always available. However counted strings are difficult to use when parsing and
processing larger blocks of text.

Because of this limitation it became common practice to refer to them by
address/length pairs on the stack (-- caddr len), where caddr refers to a
character address. The ANS committee decided to standardise on these character
strings. Because of widespread past practice, it was impossible to eliminate counted
strings, nor is it desirable to do so, as counted strings are a very convenient storage
format.

Although there was some pressure to standardise zero terminated strings, their
inefficiencies (especially for embedded systems) and lack of compatibility with
memory operations lead to the rejection of this pressure.

It should be noted that many Forth programmers, just like programmers in other
languages, have become accustomed to the assumptions that a character is a unit of 8
bits (an ‘octet’), that a byte is an 8 bit unit, and that memory is addressed in 8 bit
units. This is especially true of programmers whose first language is English, and
such programmers are also often only used to the ASCII 7 bit character set.
Nowadays, even the 16 bit Unicode set (UTF-16) is inadequate for all languages. The
CD accompanying this book includes the draft ANS Forth proposals for handling
wide characters and internationalisation.

Counted strings
A counted string is stored as a count byte followed by that many characters. To put a
string into a word use C" which compiles a string into the dictionary, and returns its
address when the word executes.

Components of Forth

31

: HELLO$ \ -- caddr
 C" Hello there " ;

The string will start with the 'H' and end with the space before the quotation mark. The
address returned by HELLO$ points to the count byte. To convert this address to the
address of the first character and the number of characters, the word COUNT is used.

When a string is to be printed, it is usually done by the word TYPE, which needs the
address of the text to be printed and the number of characters to be printed. To print the
string above we would use:

HELLO$ COUNT TYPE

To pick individual characters out of a string you simply add the number of the required
character to the start address and fetch it. For the first 'l':

HELLO$ 3 + C@ EMIT

To print the sequence 'lo t':

HELLO$ 4 + 4 TYPE

Character Strings
A character string in memory is described by its start address and length.

: HELLO$ \ -- caddr
 C" Hello there " ;

Text and String input
The principal word to fetch strings from the keyboard is ACCEPT which requires the
address of a buffer in which to put the string, the maximum number of characters to
read, and returns the number of characters read. To create an 80 byte buffer, read a
string into it, and inspect the contents of the buffer, we create a buffer called BUFFER$
and then reserve another 78 bytes (the variable reserves two), read 80 bytes into it, and
then display the contents of BUFFER$.

CREATE BUFFER$ 80 ALLOT
CR BUFFER$ 80 ACCEPT
(now enter a string at the keyboard)
BUFFER$ SWAP DUMP

You will see that BUFFER$ contains the text you entered without a count byte. Inside
Forth there is an area called the terminal input buffer (its address is returned by the
word TIB). The word QUERY reads a line of text into TIB. The word WORD then
extracts a sub-string bounded by a specified character, and copies the string to the end
of the dictionary as a counted string (count byte + characters), returning the address at
which it left the string. Try entering the word below:

: T \ just another test word
 BL WORD 40 DUMP ;
T xxxx yyyy zzzz

ANS Forth specifies a buffer called PAD (-- addr) which is available for
application use. Many Forth systems (even some nominally ANS compliant) use
PAD internally. If you use PAD and see inconsistent results recheck your code with a
buffer other than PAD.

Components of Forth

32

Print Formatting
Forth has a very powerful number string formatting system. It is quite different from
that supplied with C or BASIC. To print a number as pounds and pence (or dollars and
cents, or francs and centimes), try the following:

HEX
: .POUNDS \ u --
 [CHAR] £ EMIT
 S>D <# # # ASCII . HOLD #S #> TYPE
;
DECIMAL
5050 .POUNDS

The phrase [CHAR] £ EMIT prints the pound sign. Number conversion is started by
<# and finished by #>. The word <# needs a double number (S>D converts single
numbers to double). Numeric conversion then proceeds LEAST SIGNIFICANT
DIGIT first. For each # a digit is converted. The word HOLD takes a character and
inserts it into the character string being generated. So the phrase

 # # ASCII . HOLD

produces the two least significant digits and a decimal point (the pence portion). The
word #S converts the rest of the number, producing at least one digit. Numeric
conversion is finished by #> which leaves the address of the generated string, and the
number of bytes in the string. TYPE then prints the string.

You can easily produce your own number conversion formats. Suppose we wanted to
print numbers as pounds and pence, with six figures before the decimal point, two after
it, and leading zeros suppressed except in the character before the decimal point. The
format we want is 'xxxxxy.yy' where x is a digit or a blank and y is a digit.

We need to generate a word #B which produces a digit if possible or a blank, if number
conversion has finished.

In between <# and #> the number being converted is in double number form. When a
digit is converted by # it is divided by the current base, the remainder is converted to a
character to be output, and the quotient is returned. Thus the function of #B is to allow
numeric conversion if the number is non-zero, otherwise to insert a blank into the
output.

: D0= (d -- t/f)
 OR 0= ;

: #B (d1 -- d2)
 2DUP D0=
 IF BL HOLD
 ELSE #
 THEN ;

The word BL returns the character code for a space. Now we can generate .P which
will print a double number as eight characters with a decimal point.

: .P \ d1 --
 <# # # ASCII . HOLD # #B #B #B #B #B #>
 TYPE ;
500.00 .P

Components of Forth

33

When you enter a number that includes a dot, it is treated as double number. The
position of the comma has no significance, except that the number of digits after it is
held in the variable DPL in many systems. Try:

5,0000 .P DPL @ .
500.00 .P DPL @ .

Both numbers are converted to the same value, but the system variable DPL tells you
how many digits were entered after the dot. If no dot had been entered, the number
would have been treated as a single number, and the value of DPL would have been -1.

If you want to explore print formatting more fully, and gain yourself fame for the more
exotic style of programming, try formatting time and date from a 32 bit number of
seconds. Changing the number conversion base in the middle of print formatting words
can be very useful.

MPEism: Because the ‘.’ and ‘,’ characters are both used as number separators for
currency in Europe, MPE Forths default to using ‘,’ in a number to indicate a double
number. This also avoids confusion with floating point numbers. The default can be
changed to the ANS standard.

Vocabularies
In constructing an application written in Forth a large number of new words are
generated. With the already large number provided in the nucleus, problems can arise
in simply remembering what the words mean. Other problems can arise because of
name reuse. In one part of an application, ATTACH may refer to attaching an interrupt
to a piece of code. In another section, it may refer to an operation on a file, and again
may refer elsewhere to the application performed by the robot under control.

A method is needed to control the environment in which we are working. In the
examples above the word ATTACH has different meanings in different contexts. The
context in which a word exists is its vocabulary. Technically, vocabularies are usually
defined in terms of wordlists, but since the vast majority of Forths support
vocabularies for user convenience, I have chosen to discuss vocabularies first.

Vocabularies are created by the phrase:

VOCABULARY <vocabulary-name>

For example the vocabulary of words dealing with the robot might well be called
ROBOTICS, and would be defined by:

VOCABULARY ROBOTICS

The Forth system is told which vocabulary words are defined into by the word
DEFINITIONS, which sets the vocabulary that words are currently to be defined in.
After the phrase:

 ROBOTICS DEFINITIONS

all new words will be part of the ROBOTICS vocabulary, and you could list all the
words in that vocabulary by typing:

 ROBOTICS WORDS

Having defined which vocabulary new words are built into, we must now define which
contexts are relevant when searching for word names. For example, moving a robot
arm might need access to floating point words in vocabulary F-PACK, the graphics

Components of Forth

34

words in GRAPH for console displays, and the multi-tasking words in TASKING. To
cope with all this we also need a way to start at the beginning again.

The word that means 'search the minimum' is ONLY which sets Forth to search the
minimum, often only a tiny vocabulary called ROOT. Most of the common words are
in FORTH which is the main vocabulary. Thus the phrase:

 ONLY FORTH

resets the system to only use FORTH (and the little ROOT). We can add another
vocabulary to be searched with the word ALSO which adds the new vocabulary so that
its searched first. After executing:

 ALSO F-PACK

the F-PACK vocabulary will be searched first, then Forth, and finally ROOT. To
provide the complex order described earlier, the following phrase can be used:

ONLY FORTH
ALSO F-PACK ALSO GRAPH ALSO TASKING
ALSO ROBOTICS DEFINITIONS

It is usual for the vocabulary into which words are defined to be the first in the search
order, and so the last one specified. When the ROBOTICS vocabulary is being defined
into, it is most likely that other words in the same ROBOTICS context will be required,
and if duplicate names exist, it is the ones in the ROBOTICS context that are most
likely to be needed.

In many Forths you can get a list of all the vocabularies that have been defined by
typing:

VOCS

and you can see the search order used by typing:

ORDER

The following Forth words are involved in vocabulary control, and they will all be
documented in the glossary for your Forth:

CONTEXT CURRENT \ pointers
FORTH ROOT \ vocabularies
VOCS ORDER WORDS \ display words
ONLY ALSO DEFINITIONS PREVIOUS

Wordlists
When a word is searched for by name, the name is part of a wordlist. Conceptually
the list is single linked list of names, with the last word added being looked at first.
This means that when a new definition has the same name as a previous one, the new
one is found rather than the old one.

How wordlists are implemented is often rather different. Typically, the name is
hashed to produce an index into several sub-lists. The number of sub-lists (usually
called threads) varies quite widely. Other systems generate dynamic hash-tables or
use databases. Whatever internal mechanisms are used, an ANS Forth system will
follow the model above as the user sees it.

A new wordlist is created by the word WORDLIST (-- wid) which returns a
wid or wordlist-identifier. You cannot assume anything about the meaning of a wid

Components of Forth

35

nor use it except where a wid is required, otherwise you are making assumptions
about the internal structures in the Forth system.

WORDLIST is provided to allow you to create and manipulate the search order for
words: it is there for toolmakers. It is often used to provide a sealed environment for
user commands, to hide groups of words in large projects, or to hide methods in
object oriented extensions. When used like this, the most important word used is

SEARCH-WORDLIST c-addr u wid -- 0 | xt 1 | xt –1
Find the definition identified by the string c-addr u in the word list identified
by wid. If the definition is not found, return zero. If the definition is found,
return its execution token xt and one (1) if the definition is immediate, minus-
one (-1) otherwise.

The word FIND is used by the text interpreter to look for a word in all the words in
the CONTEXT search order, which is usually a list of wordlists and vocabularies.

FIND c-addr -- c-addr 0|xt 1|xt -1
Perform the SEARCH-WORDLIST operation on all wordlists within the
current search order. This definition takes a counted string rather than a c-addr
u pair. The counted string is returned as well as the 0 on failure.

An application of SEARCH-WORDLIST is provided in the chapter “Using the Forth
interpreter”. Further use of wordlists will require the use of the following words
defined in the ANS standard: SET-CURRENT SET-CONTEXT GET-CURRENT
GET-CONTEXT.

37

6 Example: Date validation

Date Validation: the requirement
It is required to validate a date which is entered in the form:

dd mm yyyy

Validation should ensure the following:

- Year is valid in the range 1752 to 2050 inclusive.

- Month is valid in the range 1 to 12 inclusive.

- Day is valid in the range 1 to 28,29,30 or 31 depending upon the entered
month and year

A leap year is defined as a year which is exactly divisible by 4 if it is not divisible by 100,
but exactly divisible by 400 if it is. The expression defining a leap year is therefore:

((year mod 4)=0 and (year mod 100)<>0)
or (year mod 400)=0

A Forth word VALID? is required to meet this need. The word VALID? should expect
day, month and year and return true (-1) if the date is valid and false (O) if it is not. It may
be assumed that the inputs to the word will be three integers in the range -32768 to 32767
inclusive.

The stack description for VALID? is thus:

VALID? \ day month year -- t|f

Designing the solution
In order to solve this problem, it is necessary to break it down into several
sub-problems. This is the most natural way of problem solving and technique carries
forward into computer programming under the name `Top-Down Design'. Forth is
particularly suitable for this since problems can be broken down into very small
reusable parts: Words.

In this case we note that the problem comprises three main parts. These are:

1) Validation of the year: a word called YEAR?

2) Validation of the month: a word called MONTH?

3) Validation of the day: a word called DAY?

We will consider each of these in turn:

Both the validation of the year and the validation of the month can be considered in
isolation and we can code these easily. The validation of the day, however, is more
complex and this will need to be considered more carefully given the day number
and the year.

Example: Date validation

38

Coding the solution
For the year, we are required to check whether the number supplied is in the range
1752-2050. Our first attempt might be:

: year? \ year -- t|f
 dup 1752 >=swap 2050 <= and
;

However, we can use the word WITHIN? to perform the range test. WITHIN? has
the following stack effect:

WITHIN? \ n1 n2 n3 -- t|f

It returns true if the following condition holds:

n2 <= n1 <= n3

If your Forth system does not have WITHIN? You can define it as follows using the
ANS word WITHIN.

: WITHIN? \ x n1 n2 -- flag
 1+ WITHIN
;

Our definitions of YEAR? and MONTH? are therefore:

: year? \ year -- t/f
 1752 2050 within? ;

: month? \ month -- t/f
 1 12 within? ;

Each word is suffixed with a question mark. This implies that the word will return a
value of true and false. It is a naming convention.

Our definition of DAY? is not so simple, since a valid day is both dependent upon the
month and year in which it occurs (`thirty days have September' etc.) The maximum
number of valid days differs depending on the month and, in the case of February, on
the year. Our definition of DAY? is therefore:

: day? \ day year month -- t|f
 >days 1 swap within? ;

This calls a word we have not yet defined. In the top-down design path, this word
must logically come next, but because we are writing Forth, we must define this new
word first. The word >DAYS (pronounced "to days") will convert the given month
and year into the maximum number of valid days for that combination. This value is
then used as the upper bound for the WITHIN? test.

The definition of >DAYS will be in two parts: that which deals with February and
leap years and that which deals with all other months. This is shown below:

: >days \ year month -- maxdays
 dup 2 =
 if drop >leapdays
 else nip >otherdays
 then
;

Example: Date validation

39

In the case of February we return a value depending on the year supplied, otherwise
we can discard the year and just return a value based upon the month. The definition
of >OTHERDAYS is:

: >otherdays \ month -- maxdays
 dup 4 =
 over 6 = or
 over 9 = or
 swap 11 = or
 if 30 else 31 then
;

This word involves a lot of stack manipulation to keep the one item (the month) on
the top of the stack for testing. More elegant solutions exist, but we will come to
them later.

The word >LEAPDAYS must take the year, determine if it is a leap year and return
either 28 or 29 accordingly. Our definition is therefore:

: >leapdays \ year -- maxdays
 leap?
 if 29 else 28 then
;

Given the definition of a leap year (see earlier), our definition of LEAP? would be:

: leap? \ year -- t/f
 dup 4 mod 0=
 over 100 mod 0<>
 and
 swap 400 mod 0=
 or ;

We now have all the sub-words needed to validate a given date. They may now be
put together to make the required word.

Putting it all together
Our top level definition VALID? for validating a date will use the words we have
just defined: YEAR?, MONTH? and DAY?. It has the form:

: valid? \ day month year -- t|f
 dup year?
 if over month?
 if swap day?
 else 2drop drop 0 \ clean up and leave false
 then
 else 2drop drop 0 \ clean up and leave false
 then
;

Note that if a test fails we must clean up the stack and leave just the value of false.

Lessons from this example
This example of the use of the stack in Forth to manipulate numbers and test results,
etc. shows us several things about design of Forth applications:

• The problem should be split up into several smaller problems.

• Each of these should be tackled in the simplest way possible.

Example: Date validation

40

• The code should be tested as it is written.

• Smaller definitions are better.

Programmers used to C often complain that using many small functions must result
in slow code. The Forth virtual machine is optimised for handling anonymous inputs
and outputs and the code does not have to build and destroy stack frames.
Consequently the only overheads of small functions are the CALL and RETURN
machine instructions themselves. Some Forths, such as MPE’s VFX Forth, can
automatically expand small definitions to avoid even this overhead.

41

7 Simple character I/O

Although most of these words have been used before, they are defined here because
they will be used in the next two examples.

Output
EMIT char --

This word will print the specified character at the current output position, and
update the cursor position. EMIT may also correctly work with control codes.
Conceptually, EMIT is the fundamental word used by more complex screen
output words.

A few examples:

Decimal
65 emit \ will print the letter "A"
48 emit \ will print the digit "O"
7 emit \ will usually cause a beep to sound

TYPE addr length --
The word TYPE will print length number of characters starting from the given
address. To convert the address of a counted string to the parameters needed
by TYPE, the word COUNT is necessary.

CR --
Perform a carriage return, line feed operation. In other words, go to the start of
the next line.

PAGE --
This word will clear the screen and move the cursor to the top left-hand corner
of the screen. Often called CLS.

Input
KEY -- char

KEY waits until a key is pressed at the keyboard; when one is pressed it returns
the ASCII value of that key on the stack. From the keyboard, try typing KEY.
You will see the cursor advance one space and wait for you to enter a key. If
you now enter a key, and then type "dot" . you will see the ASCII code of the
character. Try this small program:

: enter-key \ --
 cr ." Enter character : " key
 cr ." You entered : " emit
;

KEY? -- t/f
KEY? returns a true flag if a character is available at the keyboard; this
character can then be read by KEY.

Simple character I/O

42

ACCEPT addr +n -- len
Typical places to store text string input are TIB, and PAD. ACCEPT is used to
accept more than one character at a time from the keyboard. ACCEPT takes an
address, and a positive integer as it's arguments from the stack. The keyboard
input is accepted until either a <CR> is entered, or `+n' characters are read.
When this occurs the string is stored at the address given. The length of the
string that was actually input is returned. Try this small word:

: greetings \ --
 cr ." Enter your name : " pad 40 accept
 cr ." Hi there " pad swap type
;

String Output
Strings are handled in Forth in two ways.

The first form uses strings defined as two cells on the stack (caddr len --)
which can be passed directly to TYPE. The address of characters is often shown as
caddr.
: myTown \ -- caddr len
 S”Southampton” ;
Executing myTown will return the address of the first character of the string and its
length.
| S | o | u | t | h | a | m | p | t | o | n |
 ^
The string can be displayed using:

MyTown type

The second form is called a counted string i.e. strings are stored as a count byte (the
length of the string) followed by the actual characters that make up the string.

: town$ \ -- $addr
 C" Southampton" ;

When executed this word will return the address of the counted string
| 11 | S | o | u | t | h | a | m | p | t | o | n |
 ^
The address returned is that of the count byte. The address returned will now have to
be converted to parameters that are usable by the word TYPE above.

COUNT \ addr -- addr+1 length
To print the string Southampton define:

: print-town$ \ --
 town$ count type ;

Since TYPE works with any address and length given to it, it is possible to alter the
starting point from which to begin printing and also the number of characters printed.
e.g.

town$ \ get counted string address
1+ \ skip the count byte
4 + \ skip 4 chars. "h"

Simple character I/O

43

3 \ going to print 3 characters
type \ go ahead and print

String input and the input stream
WORD char “<text>” -- addr

WORD will allow you to show that Forth is capable of infix notation. WORD
accepts input from the input stream without modifying it. It does this by
examining each character in the input stream, if the character is equal to the
delimiting character `char' supplied, WORD returns an address containing a
counted string which represents the input up to the delimited character. Note:
Leading delimiter characters are ignored.

By convention, the form “<text>” on the left-hand side of a stack comment
does not indicate a stack item. Instead, it indicates that text is read from the
input stream.

WORD operates on the current line. The address and length of the line can be found
using SOURCE.

SOURCE -- c-addr u
Returns the address and length of the current line in the terminal input buffer.

The variable >IN is the offset in the current line of pointer "into the input stream".
This tells the interpreter how far it has got into the input stream. It is a user variable.

: i'm \ “<text>” --
 bl word
 cr ." Hi there " count type ;

Use this word in the form:

i'm Fred

Notice that "Fred" had already been typed when I'M was executed; so ACCEPT
could not be used.

Programming Note: BL is a constant returning the ASCII code for a space character.

Number output
This word below will print the numbers 1 to 100 when executed:

: 1to100 \ --
 101 1
 do i . space loop ;

The format of the output will be similar to:

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34
35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64 56 66 67
68 69 70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 90
91 92 93 94 95 96 97 99 100

Simple character I/O

44

This sort of output is messy and unsuitable for the output of tables etc. However
there is a word .R which will output numbers in fields of specified length.

.R \ n field-width --
A slight re-definition of the previous word 1to100 using the word .R would consist
of :

: 1to100 \ --
 101 1
 do i 4 .r loop ;

This word will give an output similar to:

01 02 03 04 05 06 07 08
09 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88
89 90 91 92 93 94 95 96
97 98 99 100

See if you can modify this to give five items per line.

Number input
Numerical input is handled by the previously explained character and string input
words. Once you have the ASCII string of the characters, you may need to perform
mathematical functions upon them, so Forth provides two basic words to enable the
programmer to convert the pictured input into binary data.

DIGIT c base -- n t/f
Simple to use word that is useful when parsing simple numerical input.
DIGIT converts the ASCII character given to a number, if possible, in the
base supplied, but returns only the false flag if it failed to convert the
characters. Try this small word:

: get-# \ --
 cr ." Enter a number : " key 10 digit
 if cr ." The number was : " .
 else cr ." That was not a number !!!"
 then
;

NUMBER? addr -- nl..nn n2
Simple to use word that is useful when parsing numerical string input.
NUMBER? converts the counted string into a number if possible. If conversion
was successful, then the number of words generated, as well as a number of
that size is left on the stack. If conversion was unsuccessful then a zero, false,
flag is left on the stack:

No conversion -- 0
Single number -- n 1
Double number -- d 2

Simple character I/O

45

If a double number is encountered the user variable DPL will contain the number of
digits after the decimal point.

MPEism: The ANS standard specifies that a double number is indicated by a ‘.’
character in the number. Because this confuses people used to entering floating point
numbers with a dot, and because there is considerable variation within Europe on
the use of commas and dots in numbers, MPE Forths default to using a comma to
indicate double numbers. MPE Forths use the variable DP-CHAR to hold the
character which signifies a double number.

Redirecting KEY and EMIT
Many systems permit KEY, EMIT and friends to be redirected to device other than
the console. Desktop systems use this for windows, serial lines, memory buffers, files
and so on. Embedded systems can use redirection to switch output from the
development port to an LCD display or a ticket printer. Redirection is usually set
independently for each task.

Because I/O redirection is not defined by the ANS standard, the implementation of
redirection varies widely between Forth systems.

47

8 Defining with CREATE ... DOES>

This section is devoted to a facility which distinguishes Forth from almost all other
languages. To use this facility you will only need to learn one new Forth word. The
concepts involved with this word however are profound. If you can master it you will
have become a true Forth programmer!

Most languages distinguish a ``compile time'' phase from a ``run time'' phase. For
example when declaring an array in Pascal, at compile time space must be reserved
and at run time the array elements will be accessed.

Forth does not include a standard method for defining arrays. Instead it gives you the
tools to define compile time and run time behaviour, so you can create your own
``defining words'' to set up arrays and many other ``classes'' of word. Standard Forth
has some basic ``defining words'' already supplied. For example: CONSTANT,
CREATE and VARIABLE. We will now have a closer look at CONSTANT to see how
such defining words can themselves be defined.

All words defined by CONSTANT have a similar behaviour. Suppose we define:

3 CONSTANT FRED
7 CONSTANT JIM

When Forth reads the definition of FRED, a dictionary entry for FRED is created and
the value 3 is associated with it. We call this the compile time action for FRED.
When the FRED is subsequently invoked, as in:

FRED .

the run time action for FRED is executed, and this pushes the value 3 onto the stack.
FRED is called a child of CONSTANT. A possible definition of CONSTANT is:

: CONSTANT \ n -- ; -- n
 CREATE \ compile time, create new data word
 , \ lay down the value n
 DOES> \ what the child does, get data address
 @ \ fetch contents
;

CREATE <name> makes a new entry in the dictionary. The run time action of
<name> is to return the address at which any data (laid down by ,) may be found.

The phrase CREATE , is the compile time action which takes place when a constant
is defined. At this point CREATE builds the dictionary entry for the new constant and
its value is compiled into the next free dictionary location.

The words , and C, are used to compile a cell- or character-sized unit in the
dictionary.

, \ x --
Place the value x into the dictionary at HERE and update the pointer the
pointer by the size of a cell.

Defining with CREATE ... DOES>

48

C, \ char --
Place the character-sized data (usually a byte) into the dictionary at HERE and
update the pointer the pointer by the size of a character.

HERE \ -- addr
Return the address of the next free space in the dictionary data area. You will
come across this word later.

ALLOT \ n --
Reserve space in the dictionary data area without initialising it. You will come
across this word later.

DOES> separates the compile time action from the run time action, returning the
address of the data at run time. The run time action for a constant is simply to
perform a ``fetch'' with the command but a fetch from which address? Recall that
words defined by CREATE return the address of the next free dictionary location at
the time they were created. This idea still holds, but now we can add words following
DOES> which act on this address.

Traditionally the address left for the run time code is called the “parameter field
address” of the word. All constants perform the same run time action, but on
different parameter fields.

MPEism: A defining word has two stack comments. The first is for the stack action
when the defining word runs and the second is for when the child is run.

Arrays
: Array \ size -- ; [child] n -- addr ; cell array
 Create \ create data word
 cell * \ calculate size
 Here over erase \ clear memory
 allot \ allocate space
 Does> \ run time gives address of data
 Swap cell * + \ index in
;

: 2Array \ n1 n2 -- ; [child] n1 n2 -- addr ; 2-D array
 Create \ create data word
 Over , \ save width for run-time
 cell * * \ calculate size
 Here over erase \ clear memory
 allot \ reserve n cells
 Does> \ run time gives address of data
 Dup @ Rot * Rot + 1+
 cell *
 +
;

: Message-array \ len mesgs -- ; [child] n -– addr
\ generate an array for mesgs messages of size len
 Create \ create data word
 Over , \ save the size of the array
 * \ calculate space needed
 Here over erase \ clear memory
 allot \ reserve space for it
 Does> \ run time gives address of data
 Dup @ \ get length

Defining with CREATE ... DOES>

49

 Rot * \ calculate offset
 + \ add to base
 cell + \ skip length
;

Structures
A structure is a template for the layout of data. An instance of a structure may be
global data or a record in memory or a peripheral in a microcontroller. A field in a
structure is a data unit of a certain size. The core action of a field is to add an offset
(position) in the template to the base address (where the physical structure is
located). When a structure is referred to by name in the code, we need the size of the
structure.

When implementing a structure notation in Forth we are using defining words to
extend the compiler. The version here provides the required functionality with a little
bit of syntactic sugar to make the code easier to read.
0 constant [struct \ -- 0 ; start
\ Start a structure definition, returning zero as
\ the initial offset.

: field \ offset n -- offset+n ; addr -- addr+offset
\ When defining a structure, a field of size n starts
\ at the given offset, returning the next offset. At
\ run time, the offset is added to the base address.
 create
 over , + \ lay offset and update
 does>
 @ + \ addr offset to address
;

: struct] \ offset -- ; -- size ; end
\ End a structure definition by naming it.
 constant
;

The first and third words are just syntactic sugar to make the code easier to read. For
example, we can define a simple array of integers as follows:
: int \ addr – addr+offset
 cell field
;

[struct \ -- 0
 int link \ link to previous structure
 int ident \ identifier
 int data \ data value
 16 field name \ name string
struct] record \ -- size

When we need a global instance of this structure we can use:
Create FirstRec \ -- addr
 Record allot

Or, more prettily:

Defining with CREATE ... DOES>

50

Record buffer: FirstRec \ -- addr

To write a value into the data field, we can use:
55 FirstRec data !

Although this is a very simple example, it provides what we need. However, to some
eyes it would be easier to read if the structure is named first and defined afterwards.
Many Forth compilers, even optimising ones, do not expand children of defining
words and the code may be somewhat inefficient. Solutions to these problems are
provided in the later chapter “Extending the compiler”.

51

9 Diary and Phone Book Examples

This chapter gives two worked examples. For array definitions see the defining word
chapter. These examples are not written in the most “Forth-like” style, they provide
solutions that will be familiar in other languages. The phone book example is
revisited in a later chapter to show how to take more advantage of Forth.

Diary

Specification

• Stores x entries in the format:
 day, month, year, hour, min, user message.

• Validates all fields before storage, including leap years...

• Provide words that :-

Store-Entry \ dd mm yy hh mm <message> --
To-Do \ dd mm yy -- ; display messages for day

• Shall provide array-building words.

Implementation
13 constant cr-chr \ code for carriage return

10 Constant Max-entries \ maximum number of entries allowed
20 Constant Max-message-len \ maximum message length

Variable #entries \ number of entries in diary

Max-message-len Max-entries \ array of max-entries and
 Message-array Messages \ max-message-len long
Max-entries 2 2Array Times \ array for holding times
 0 Constant Hour \ index for hours
 1 Constant Minute \ index for minutes
Max-entries 3 2Array Dates \ array for holding dates
 0 Constant Day \ index for hours
 1 Constant Month \ index for minutes
 2 Constant Year \ index for years

: $move \ src$ dest$ -- ; copy counted string
 over c@ 1+ move
;

: Save-message \ message$ entry# -- ; save message$ at entry#
 Messages $Move \ copy message to array
;

: Save-time \ hh mm entry# -- ; save time (hh:mm) in array
 Tuck Minute Times ! \ save minutes
 Hour Times ! \ save hours
;

Diary and Phone Book Examples

52

: Save-date \ dd mm yy entry# -- ; save date
 Tuck Year Dates ! \ save year
 Tuck Month Dates ! \ save month
 Day Dates ! \ save day
;

: Valid-message? \ message$ -- t/f ; is message valid?
 Dup c@ 0<> \ must be non zero
 Swap c@ Max-message-len <= and \ and must fit in array
;

: on \ -- ; just added for readability
;

: at \ dd mm yy -- t/f ; save date if valid
 3Dup Valid-date? \ is date valid?
 If \ Yes,
 #entries @ Save-date \ save date
 True \ return true
 Else \ No,
 2Drop Drop \ clear stack
 False
 then
;

: ?Valid-message \ message$ -- t/f ; validate and save
 Dup Valid-message? \ is message valid?
 If \ Yes,
 #entries @ Save-message \ save message
 True
 Else \ No,
 Drop \ clear stack
 False
 then
;

: ?Valid-time \ hh mm -- t/f ; validate and save time
 2Dup Valid-time? \ is message valid?
 If \ Yes,
 #entries @ Save-time \ save message
 True
 Else \ No,
 2Drop \ clear stack
 False
 Then
;

: Write \ hh mm <name> -- t/f t/f ; validate and save
 Ascii . Word ?Valid-message \ validate and save message
 -Rot ?Valid-time \ validate and save time
;

: Diary-full? \ -- t/f ; is Diary full?
 #entries @ Max-entries = \ at maximum?
;

: To-diary \ t/f t/f t/f -- ; accept entry?
 And And \ all ok?

Diary and Phone Book Examples

53

 Diary-full? Not And \ and is diary is not full?
 If \ Yes,
 #entries incr \ accept entry
 cr ." Set entry in diary" \ tell user
 Else \ No,
 cr ." Can’t set diary entry" \ tell user
 Then
;

: This-date? \ dd mm yy entry# -- t/f ; entry has date?
 Tuck Year Dates @ = \ year match?
 -Rot Tuck Month Dates @ = Rot and \ and month match?
 -Rot Day Dates @ = and \ and day match?
;

: .Time \ entry# -- ; display time
 Dup Hour Times @ 2digits \ display hour
 Ascii : Emit \ display colon
 Minute Times @ 2digits \ display minutes
;

: .Message \ entry# -- ; display message for entry
 Messages count type
;

: .entry \ entry# -- ; display entry
 cr
 Dup .Time \ display time
 5 Spaces \ leave a gap
 .Message \ display message
;

: Diary \ dd mm yy -- ; display messages for this date
 #entries @ 0
 ?Do
 3Dup i This-date? \ a matching date?
 If \ Yes,
 i .entry \ display message
 Then
 Loop
 2Drop Drop
;

\ Example diary entries

on 3 12 1992 at 10 30 write message 1. to-diary
on 3 11 1992 at 10 30 write message 2. to-diary
on 3 12 1992 at 12 30 write message 3. to-diary
on 2 12 1992 at 10 30 write message 4. to-diary
on 2 12 1992 at 10 30 write message 4. to-diary
on 3 12 1991 at 10 30 write message 5. to-diary
on 3 12 1992 at 11 15 write message 6. to-diary
on 29 2 1988 at 10 30 write message 7. to-diary
on 24 12 1992 at 10 30 write message 8. to-diary
on 3 12 1992 at 01 00 write message 9. to-diary

0 [if]

Diary and Phone Book Examples

54

\ Example invalid diary entries
on 32 1 1991 at 10 30 write message 5. to-diary
on 29 2 1991 at 10 30 write message 5. to-diary
on 2 13 1991 at 10 30 write message 5. to-diary
on 2 12 2100 at 10 30 write message 4. to-diary
on 2 12 1992 at 24 30 write message 4. to-diary
on 2 12 1992 at 10 70 write message 4. to-diary
on 2 12 1992 at 10 70 write message this message is far, far
far too long. to-diary
[then]

Diary and Phone Book Examples

55

An Internal Phone Book

Specification
You are required to create an application to allow the storing and querying of an
electronic phone book for internal calls.

The data to be recorded is the surname of the employee:

1 <= length(surname) <= 15

and his or her telephone number:

0 <= number <= 9999

There may be up to twenty entries in the phone book at any one time. Apart from 0
itself, telephone numbers may not begin with a 0. The user interface requirement is
as follows.

Adding

To add a number to the book the user should type in the following format:

nnnn calls name<Cr>

Where `nnnn' is a phone number in the correct range (0 <= number <= 9999) and
`name' is the surname of the employee (not more than 15 characters long). <Cr>
represents the pressing of the "Return" or "Enter" key.

Examples:

3270 calls prefect
4298 calls slartibarfast
0 calls switchboard
42 calls dent

Querying

The phone book may be queried in three ways.

Who is at this number?

nnnn calls?<Cr>

Enquires which person a number calls. The computer should reply with the surname
of the individual or give an appropriate error message.

42 calls? Dent
25 calls? Nobody \ error case

What is X's number?

phone name<Cr>

Inquires the telephone number of the person named. The computer should respond
with the number of the person named or give an appropriate error message.

phone Prefect<Cr>
3270
phone Marvin
Marvin Has No Phone!

Diary and Phone Book Examples

56

List the book
entries?<Cr>

List the contents of the phone book.

entries?<Cr>
Prefect -- 3270
Slartibartfast -- 4298
Switchboard -- 0
Dent -- 42

Some design notes
The first thing we will need for an answer to the problem is a data structure to
contain the names, and another to contain the phone numbers. Thinking back to the
notes on arrays, we can see that the best way to hold the phone numbers will be an
array of twenty entries. This is fairly straightforward. However, a little thought will
be required to hold the names in a data structure.

We will need to define a data structure that consists of `slots' of 16 bytes each (one
for the 1-15 characters of the name, and one for the count byte of the counted string).
It is suggested that the data structure that holds these names has the following stack
effect:

\ entry# -- $addr

which will take the number of an entry, and return the address in memory of the text.
We will also need to know which is the next free entry in the book so that when we
add another, we will add it into the next free slot. This we can do with a variable.

When we add an entry, we define the name and the phone number. The word CALLS
will therefore take a number off the stack and store it in the next free slot in the array
of phone numbers. The free slot will be determined from the variable which contains
this, and will start at zero. Before storing the phone number, the condition that it does
not start with a zero, unless it is zero will have to be tested. This test will run along
the lines that if the number is zero, it is acceptable. However, if the number is
non-zero, the nature of the Forth interpreter is such that leading zeros are removed
from a number. This means that any number typed will not have a leading zero on it
by the time it is on the stack. This meets the condition required. Having stored the
telephone number, the CALLS word must also extract the name of the called from the
command line. This may be done using the phrase `BL WORD'. This will return the
address of the counted string so gathered. This string may be trimmed to 15
characters if it is too long, by fixing the count byte. The text and count byte must
then be moved into the array containing the names. Having done so, the variable
indicating the next free slot must be updated.

The CALLS? word is used to find out who a telephone number calls. This will take
the phone number off the stack as a parameter, and test each entry in the array of
phone numbers (up to the first free slot). If the number is found, then the appropriate
name will be extracted from the name array, and printed. If the phone number is not
found, the error message will be printed.

The word PHONE returns the phone number for the person named on the command
line. This word will take the name from the command line, much like CALLS, and
will then look up all entries in the array of names until one matches. If no match is
found, the error message will be printed. If a match is found, then the equivalent
phone number will be extracted from the array of phone numbers, and will be
printed.

Diary and Phone Book Examples

57

Listing the phone book (ENTRIES?) will index through the array of names, and
print each name out as it finds it. As it finds a name, it will look in the array of phone
numbers for the equivalent entry, and will print out the phone number. It will the
print a <Cr> and go on to the next one.

Implementation
This version is a simple classical implementation using an array of records. A later
chapter discusses an implementation that takes advantage of Forth’s internal
structures.

Structures

0 constant struct{ \ -- 0
\ Start a structure.

: fld \ len size "<name>" -- len' ; addr -- addr+len
\ Define a field in a structure, given the current length
\ of the structure and the size of the field. The name follows
\ in the input stream.
 create
 over , +
 does>
 @ +
;

: }struct \ len "<name>" -- ; -- len
\ End a structure definition and give it a name.
\ At run time <name> returns the length of the structure.
 constant
;

Strings

[undefined] UPC [if]
: UPC \ char -- char'
\ Convert supplied character to upper case if it was
\ alphabetic otherwise return the unmodified character.
 dup [char] a >= if
 dup [char] z <= if
 $DF and
 then
 then
;
[then]

[undefined] UPPER [if]
: UPPER \ addr len --
\ Convert the ASCII string described to upper-case. This
\ operation happens in place.
 bounds ?do
 i dup c@ upc swap c!
 loop
;
[then]

Diary and Phone Book Examples

58

Miscellaneous

[undefined] place [if]
: place \ caddr len dest --
\ Store the string given by caddr/len as a counted string
\ at dest.
 2dup 2>r \ write count last
 1 chars + swap move
 2r> c! \ to avoid in-place problems
;
[then]

[undefined] >pos [if]
: >pos \ +n --
\ Place cursor on current line to column n if possible.
 out @ - spaces
;
[then]

[undefined] bounds [if]
: bounds \ addr len -- addr+len addr
\ Convert an address and length to a form suitable for use
\ with DO...LOOP structures.
 over + swap
;
[then]

Phone Book data

struct{
 cell fld PB.Phone# \ phone number
 #16 fld PB.Name \ name
}struct PBentry \ -- len
\ The structure that defines a record in the phone book.

20 constant MaxEntries \ -- n
\ Maximum number of entries in the phone book.

MaxEntries PBentry * constant /PhoneBook \ -- len
\ Size of the phone book data.

create PhoneBook \ -- addr
\ The phone book data.
 /PhoneBook allot

Processing the phone book

: PB[] \ n -- addr
\ Return address of nth entry in phone book.
 PBentry * PhoneBook +
;

: CheckNumber \ n --
\ Error if n is outside the range 0..9999.
 0 9999 within?
 0= abort" Telephone number outside range 0..99999"
;

Diary and Phone Book Examples

59

: CheckName \ caddr len --
\ Apply checks to a name.
 dup 15 > abort" Name too long"
 2drop
;

: FindNumber \ num -- n true | false=0
\ Given a number, find the slot it occupies in the phone book
\ and return the slot number and true. If the number cannot be
\ found, just return false.
 MaxEntries 0 do \ -- num
 dup i PB[] PB.Phone# @ = if
 drop i true unloop exit \ -- n true
 then
 loop
 drop 0 \ -- 0
;

#32 buffer: N1
#32 buffer: N2

: SameNames? \ caddr1 len1 caddr2 len2 -- flag
\ Return true if the names given by caddr1/len1 and
\ caddr2/len2 are the same. Why is this word provided?
\ How can you compare names in different CaSes?
 N2 place N1 place
 N1 count upper N2 count upper
 N1 count N2 count compare 0=
;

: FindName \ caddr len -- n true | false=0
\ Given a name, find the slot it occupies in the phone book
\ and return the slot number and true. If the number cannot be
\ found, just return false.
 MaxEntries 0 do \ -- caddr len
 2dup i PB[] PB.Name \ -- caddr len caddr len an
 count SameNames? if
 2drop i true \ -- n true
 unloop exit
 then
 loop
 2drop 0 \ -- 0
;

: FindFree \ -- n true | false=0
\ Find a free slot in the phone book and return the
\ slot number and true. If there is no room, just return
\ false.
 MaxEntries 0 do \ --
 i PB[] PB.Phone# @ -1 = if
 i true unloop exit \ -- n true
 then
 loop
 0 \ -- 0
;

: EraseEntry \ n --
\ Wipe nth entry in phone book.

Diary and Phone Book Examples

60

 PB[] dup PBentry erase
 -1 swap PB.Phone# !
;

: EraseBook \ --
\ Wipe the phone book
 MaxEntries 0
 do i EraseEntry loop
;
EraseBook

: MakeEntry \ num caddr len n --
\ Add the entry whose phone number is num and name is
\ given by caddr/len to slot n in the phone book.
 PB[] >r
 2dup CheckName r@ PB.name place
 dup CheckNumber r> PB.Phone# !
;

: .PBname \ slot --
\ Display name in entry.
 PB.name count type
;

: .PB# \ slot --
\ Display name in entry.
 PB.Phone# @ .
;

: ShowEntry \ n --
\ Display the contents of slot n in the phone book
 PB[] dup PB.name c@ if \ if slot has name
 cr dup .PBname \ display name
 #16 >pos ." -- " \ step to col 16
 .PB# \ display number
 else
 drop
 then
;

Application words

: Calls \ num "<name>" --
\ Make a new entry in the phone book in the form:
\ <nnn> Calls <name>
 dup FindNumber abort" Number in use"
 bl word count 2dup FindName abort" Name in use"
 FindFree 0= abort" Phone book full"
 MakeEntry
;

: Calls? \ num --
\ Report who is called by number num. Use in the form:
\ <nnn> Calls?
 FindNumber if
 PB[] .PBname
 else
 ." Nobody"

Diary and Phone Book Examples

61

 then
;

: Phone \ "<name>" --
\ Give the phone number for name. Use in the form:
\ Phone <name>
 bl word count 2dup FindName if
 cr PB[] .PB# 2drop
 else
 cr type ." has no phone."
 then
;

: Entries? \ --
\ Display the contents of the phone book.
 MaxEntries 0 \ --
 do i ShowEntry loop
;

63

10 Execution Tokens and Vectors

When the Forth text interpreter or the Forth compiler looks up a word in the
dictionary they find the ``execution token'' associated with the word. An execution
token, often referred to as an xt, is a unique identifier for a Forth word. It is usually,
but not always, the address of the code to call.

In this section we see how the ability to handle an execution token can be useful in
an application.

Input the following command line:

1 2 ' + {ok}

There are now three items on the stack, which are the values 1 and 2, and the
execution token for +. The single apostrophe (referred to as ``tick'') looks up the
following word and leaves its execution vector. If you need to refer to the xt of a
word inside a colon definition use the phrase [‘] <word>.

We can execute the token:

EXECUTE . {3 ok}

By definition, the phrase ‘ <word> EXECUTE has the same action as <word>, so
this will have the same overall effect as performing:

1 2 + . {3 ok}

The word EXECUTE (i*x xt -- j*x) just performs the xt passed to it. It is,
if you like, an indirect call to xt. The notation i*x and j*x indicates that the stack
action is defined by that of xt and not by EXECUTE.

Exercise: Predict what Forth will print in response to:

 100 20 ' * EXECUTE .

Execution vectors
We can treat an execution token like any other data item, pass it as a stack parameter,
save it in a variable or in a table and so on. In the following example we define a
variable OPERATION which will be used to hold an execution token. DO-IT is
defined to execute the operation, and SET-OP finds a new token and stores it in
OPERATION.

VARIABLE OPERATION \ -- addr

: DO-IT (i*x – j*x) OPERATION @ EXECUTE ;

: SET-OP (--) ' OPERATION ! ;

We can use this as follows.

SET-OP / \ store xt of / in OPERATION

9 3 DO-IT . {3 ok}

Note that when “tick” is embedded in another definition, as it is in SET-OP, this
definition takes on the property of looking up the next word in the dictionary. It is

Execution Tokens and Vectors

64

also possible to look up a word that occurs within the compiled text. This is done by
the word ['].

For example the following definition will set the execution token of + in the variable
OPERATION.

: SET+ ['] + OPERATION ! ;

Now we can enter:

SET+ 9 3 DO-IT . {12 ok}

Exercise: Define a word KEYS which inputs character codes from the keyboard and
emits them to the screen, terminating when a carriage return key is received. KEYS is
to work in several different modes.

NORMAL KEYS will echo all characters without changing them.
UPPER KEYS will echo only upper case letters, with a dot printed for all other
characters.
CAP KEYS will convert lower case letters to upper case, then output.
ENCODE KEYS will add one to the ASCII code of each key before output.

Complete the following outline code to implement the application. Note that the
design allows additional modes to be added without changing the existing code! Note
also that you can define a character inside a colon definition using:
 [CHAR] A (-- 65)

VARIABLE KEY-OPERATION

: TRANSFORM-KEY
 KEY-OPERATION @ EXECUTE
;

: KEYS \ --
 BEGIN
 KEY DUP 13 <>
 WHILE
 TRANSFORM-KEY EMIT
 REPEAT
 DROP \ drop CR key code
;

: NORMAL \ --
 ['] NO-OP KEY-OPERATION !
;

: ENCODE \ --
 ['] 1+ KEY-OPERATION ! \ 1+ is short for 1 +
;

: <UPPER> \ char1 – char2
 your code goes here \ if not A..Z, replace by ‘.’
;

: <CAP> \ char1 – char2
 your code goes here \ if a..z, replace by A..Z
;

: UPPER \ --
 your code \ store xt of <UPPER> in KEY-OPERATION
;

Execution Tokens and Vectors

65

: CAP \ --
 your code goes here
;

Most Forth systems provide a defining word called DEFER which creates a variable
(holding an xt) which executes the xt when the word is referenced.

DEFER <name>

A common notation for setting the action is:
 ‘ <action> IS <name>
although several others are also used.

MPEism: The ANS standard does not define DEFER or a means of setting an action.
As well as supporting IS MPE code uses the form:

 ASSIGN <ACTION> TO-DO <NAME>

Execution arrays
There are cases when the action of a system is dependent of the value of the input
data. An example of this is handling the keystrokes for an editor. Many editors are
programmable for the actions of key strokes.

A naive but eventually complex method would be to hold the keys for specific
actions in a set of variables and to check each key value against each of these. This
eventually becomes tedious and long winded in the source code, and slow to execute.
This may not be important in human terms, but can significantly impact the
performance when replaying a macro. In other applications that process a serial data
stream, performance may be important.

In our editor example, we will assume for the moment that we are handling 8 bit
characters. This means that we have 256 characters to choose from. We can store the
xt of the word that handles character n in the nth slot in an array. Since many of the
characters are handled in the same way (displayed) we can simplify life by passing
the character code to the word that handles it, and give all the character-handling
words the stack action:

char --

To define the array:

create KeyTable \ -- addr
 256 cells allot \ reserve space for 256 xts

Now we need to initialise the table with the default action, which is to display the
character. We assume that this word is called DisplayChar.

: InitTable \ --
 KeyTable 256 cells bounds
 do [‘] DisplayChar i ! cell +loop
;

Now we need a word to set a character’s action:

: SetKey \ char “name” --
 ‘ \ find xt of the next word
 swap cells KeyTable + ! \ index into the table
;

Execution Tokens and Vectors

66

Now we can define the action of each keystroke by using a simple script. If we keep
this script in a file, we can make the editor completely configurable, we can preserve
the settings, and we can use the Forth interpreter itself to load our editor’s settings.
Since we have an interactive language, there is no reason not to use the interpreter
and/or compiler at run-time!

13 SetKey doCR
10 SetKey doLF
...

In a fixed application, e.g. serial line processing, we may only need to handle the
control keys (0..31) in this way, and with fixed actions (--). We can produce a
predefined table as follows:

Create KeyTable \ -- addr
 ‘ action0 , ‘ action1 ,
 ‘ action2 , ‘ action3 ,
 ...

: ProcessKey \ char --
 dup #32 u< if
 cells KeyTable + @ execute
 else
 DisplayChar
 then
;

67

11 Extending the compiler

Forth is an extensible language. In Forth you can add to the compiler itself to
produce compiler macros and new control structures.

Immediate words
Forth has a compiler that provides sequential composition of operations. Some
aspects of the compilation process require more than this however, and these
situations are dealt with by ``immediate words''.

Immediate words occur in Forth definitions in the normal way but they are executed
during compilation instead of being compiled. Suppose we enter the definition:

: BEEP 7 EMIT ; IMMEDIATE

BEEP emits an ASCII code 7, which causes a beep to be sounded by the console.
The word IMMEDIATE flags the most recently defined word as ``immediate''. Now
if we invoke BEEP during compilation of another word it will be executed
immediately rather than being composed as part of the new definition. For example
enter:

: TEST 100 . BEEP 200 . ;

The beep sounds as the definition of TEST is being compiled. It is not compiled as
part of TEST.

Immediate words are used to provide all the extensions to the basic Forth compiler.
The following words are all immediate.

.” ; IF ELSE THEN BEGIN WHILE REPEAT UNTIL AGAIN

For a more serious example we start by studying the definition of Forth's IF ...
THEN control structure. Note that the techniques we describe enable you to add new
control structures to Forth in an incremental fashion.

First we need to look a little more closely at the compiled form of a Forth definition.

The following session assumes you are seated at your Forth terminal. The results are
taken from VFX Forth for Windows, which generates optimised native code. Other
compilers will generate different results. Enter the definition:

: ABS DUP 0< IF NEGATE THEN ;

Now examine the code generated by the compiler:

see abs
ABS
(00495EC4 0BDB) OR EBX, EBX
(00495EC6 0F8D02000000) JNL/GE 00495ECE
(00495ECC F7DB) NEG EBX
(00495ECE C3) NEXT,
(11 bytes, 4 instructions)
 ok
' abs 10 dump
0049:5EC4 0B DB 0F 8D 02 00 00 00 F7 DB C3 04 44 55 4D 50
 ok

Extending the compiler

68

Here, the phrase ' ABS looks up ABS in the dictionary and returns its execution
address (as discussed in the previous section on execution vectors). The body of the
definition (usually) follows this address, so the dumped values must represent the
operations DUP 0< etc.

The guts of the definitions of IF and THEN in VFX Forth are as follows:

: IF \ C: -- orig ; Run: x --
\ *G Mark the start of an IF..[ELSE]..THEN conditional
block.
 s_?br>,
; IMMEDIATE

: THEN \ C: orig -- ; Run: --
\ *G Mark the end of an IF..THEN or ..ELSE..THEN
conditional.
 s_res_br>,
; IMMEDIATE

: AHEAD \ C: -- orig ; Run: --
\ *G An unconditional forward branch resolved later.
 s_br>,
; IMMEDIATE

They simply provide access to compilation primitives which start and resolve
forward branches, producing or consuming branch target addresses. The internals of
each Forth compiler will be different and hence are not portable between Forth
implementations. What is required is a way to use words such as IF and THEN inside
other compiling words. This facility is provided by the word POSTPONE, which is
always used inside a colon definition in the form POSTPONE <name> to delay
execution or compilation of <name>. If <name> is immediate, it is not executed,
but compiled into the colon definition. If <name> is not immediate, it would
normally be compiled but now the colon definition will compile <name> when the
colon definition is executed.

Now we have the mechanics of using the existing compilation structures. As an
example, let us define a way of compiling a “short circuited” conditional. When we
want to perform an action as result of conditions a, b and c being true we can define
it two ways. The first way is:

A B AND C AND IF
 ...
THEN

If A returns false, execution of B and C is redundant. To avoid this, we might code it
a second way with several conditionals:

A IF
 B IF
 C IF
 ...
 THEN
 THEN
THEN

But this is tedious and takes a lot of source code space. A neater notation which
generates the same code as the second solution might be a third solution, originatated
by Wil Baden:

Extending the compiler

69

A ANDIF B IF C IF
 ...
THENS

ANDIF starts the structure and THENS resolves the foward branches. Now we go
back and see that when IF executes (during compilation) it produces an orig on the
compilation stack (usually the data stack). An orig is a reference to where the
forward branch has been compiled. This is consumed by THEN which patches up the
forward reference. Assuming that ANDIF also produces an orig, when THENS is
reached it will find three origs on the compilation stack. We will use a marker of 0 to
indicate that there are no more origs to be resolved.

: ANDIF \ C: -- 0 orig ; Run: x --
 0 POSTPONE IF
; IMMEDIATE

: THENS \ C: 0 orig1..orign -- ; Run: --
 BEGIN
 DUP
 WHILE \ if not the marker
 POSTPONE THEN \ resolve the latest orig
 REPEAT
 DROP \ discard the marker
; IMMEDIATE

As you can see, if takes much longer to describe this technique than to use it. Once
these words have been defined, they can be used as described above. This is an
example of a key technique in Forth, which is to change the notation to suit the
problem at hand.

Immediate words help us to change the compilation notation.

Cautionary notes
The ANS Forth standard defines a compile-time control-flow stack, as indicated by
the C: in the stack comments for the words above. The majority of Forth systems use
the data stack for the control-flow stack. The examples above will not work on
systems that do not use the data stack for the control-flow stack. Note also that the
standard does not define the size of orig or dest. We have seen systems with
these ranging from one to three cells, varying according to circumstance.

Accessing the compiler
Forth is composed of words and numbers. You can cause a word to be compiled in a
definition using the word COMPILE, (xt --) just as you can force it to be
executed using EXECUTE (xt --), where xt is an execution token as returned
by ‘ or [‘].

Similarly (but only inside a colon definition) you can force a value (number) to be
compiled into the current definition using LITERAL (x --). To use
LITERAL as the compiling primitive you must POSTPONE it – LITERAL is almost
always IMMEDIATE.

For example to lay down code that adds a number to a base value, we can define a
word +LIT, (n --) which compiles code to add a literal to the current top of
the data stack. By convention, words whose names end in a comma usually compile
code or data into the dictionary.
: +lit, \ n --

Extending the compiler

70

\ Lay down code to add a literal to the top stack item.
 postpone literal [‘] + compile,
;

If your system has an immediate version of +, you will have to postpone it. In most
cases POSTPONE will do what you want, but COMPILE, requires you to be careful.
: +lit, \ n --
\ Lay down code to add a literal to the top stack item.
 postpone literal postpone +
;

In many systems, POSTPONE and COMPILE, will give an error if the compiler has
not been turned on. The compiler is turned on by] (--) and turned off by [(
--) which is immediate.

You can use [and] inside a colon definition to calculate an expression and compile
the result as a literal. This was common practice before optimising Forth compilers
were available and practice is still used for portable code in some shops.
: foo \ --
 ...
 [const 55 *] literal \ equivalent to “const 55 *”
 ...
;
Note that because LITERAL is immediate, the result of interpreting the expression is
compiled inside foo.

In some cases, you will need to know whether the system is compiling or
interpreting. The contents of the variable STATE indicate whether Forth is compiling
(non-zero) or interpreting (zero). Words which have different behaviours in the two
cases are referred to as “state-smart”. The use of state-smart words is deprecated by
some Forth experts (see below), but it is a convenience to avoid having to know the
carnal details of your system. Incorrect use of state-smart words can lead to bugs
which are very hard to trace. Just be sensible and cautious when using them. The
general rule to avoid problems is never to tick, POSTPONE or [COMPILE] state-
smart words. Although [COMPILE] is standardised, you can normally use
POSTPONE instead.

Be careful with over-enthusiastic use of compilation techniques to improve
performance. It can lead to code that is hard to maintain, and in most cases
optimising the algorithm can lead to much higher performance than tuning the
compiler. The real virtue of these techniques is in changing the notation of your code
to suit the application.

Structures revisited
The structures example in the earlier chapter “Defining words” does not provide
efficient code in many Forth systems. This version solves the problem of naming the
structure first and provides better compilation of fields. We use defining words,
IMMEDIATE words and the compiler to gain efficiency at the expense of
complexity.

Note that the internal mechanisms of Forth compilers vary greatly and that for best
results knowledge of the specific compiler is required. The efficiency is gained by
using the variable STATE to determine whether interpretation of compilation is
required.

Extending the compiler

71

: struct \ -- addr 0 ; -- size
\ Begin definition of a new structure. Use in the form
\ STRUCT <name>
\ At run time <name> returns the size of the structure.
 create
 here 0 , 0 \ mark stack, lay initial offset
 does>
 @ \ get size of structure
;

To avoid the overhead of field calculations, the new version of FIELD accesses the
compiler to lay down the code for lit +.
: field \ offset n <"name"> -- offet’ ; Exec: addr -- 'addr
\ Create a new field within a structure definition of
\ size n bytes.
 create immediate \ the child is IMMEDIATE
 over , +
 does>
 @ state @ if \ compile
 postpone literal postpone +
 else
 +
 then
;

: end-struct \ addr n --
\ Terminate definition of a structure.
 swap ! \ set size of structure
;

: int \ <"name"> -- ; Exec: addr -- 'addr
\ Create a new field within a structure definition
\ of size one cell.
 cell field
;

struct record \ -- addr 0 ; -- size
 int link \ link to previous structure
 int ident \ identifier
 int data \ data value
 16 field name \ name string
end-struct

As in the earlier chapter, when we need a global instance of this structure we can use:
Create FirstRec \ -- addr
 Record allot

Or, more prettily:
Record buffer: FirstRec \ -- addr

To write a value into the data field, we can use:
55 FirstRec data !
Because field accesses are passed to the compiler rather than as calls to the field
words, optimising compilers have more optimisation opportunities, resulting in
smaller and faster code. In writing the definition of STRUCT we had to use a defining

Extending the compiler

72

word with its albeit small run time overhead when referring to the size of a structure.
By applying the technique we used in FIELD we can overcome even this.
: struct \ -- addr 0 ; -- size
\ Begin definition of a new structure. Use in the form
\ STRUCT <name>
\ At run time <name> returns the size of the structure.
 Create immediate
 here 0 , 0 \ mark stack, lay initial offset
 does>
 @ state @ \ compile literal?
 if postpone literal then
;

Cautionary notes
“State-smart words are evil”

A full proposition of this statement may be found at
http://www.complang.tuwien.ac.at/papers/ as ertl98.ps.gz.

Anton Ertl commented as follows on the examples above: I have revised only the
formatting of his replacement code.

FIELD: What's worse than a state-smart word? A defining word that defines
STATE-smart words. If you want fields to be efficient, define FIELD like this:
: field \ offset1 n "name" -- offset2 ; addr1 -- addr2
 over >r
 : r> postpone literal postpone + postpone ;
 +
;

and leave it to the inliner to optimize this; this is also much shorter. Another way that
field can be optimized is for offset 0:
: field \ offset1 n "name" -- offset2 ; addr1 -- addr2
 over >r
 :
 r> dup if
 postpone literal postpone +
 then
 postpone ;
 +
;

STRUCT has the same problem with STATE-smartness; this could be fixed by letting
END-STRUCT define a constant with the name given by STRUCT. This also can lead
to unexpected behaviour, but it's better than STATE-smartness. These problems are
what you get for working against the grain of Forth.

So why use state-smart words?

There are indeed problems with state-smart words and the problems they can
introduce are often hard to find. Their particular advantage is in reducing the number
of words to be defined, and so improving ease of use. If you are introducing a facility
that is used under well defined circumstances, state-smart words have their place in
your collection of techniques. If you are just using them to provide a performance
micro-optimisation, they should be avoided.

http://www.complang.tuwien.ac.at/papers/

Extending the compiler

73

For most current Forth compilers, the state-smart versions of the examples above will
generate faster code.

Remember, never tick, POSTPONE or [COMPILE] state-smart words.

75

12 Errors and exception handling

ABORT, QUIT and ABORT”
ABORT (i*x --) resets the data stack and runs the Forth text interpreter,
usually by calling QUIT. ABORT is essentially a warm restart of the system and in
some systems the action of ABORT can be modified by applications.
 <fatal error check> \ return non-zero on error
 IF ABORT THEN
QUIT resets the return stack, forces input to come from the system console, and runs
the Forth text interpreter loop.

ABORT” (x “<text>” --) tests x, and if it is non-zero resets the data stack,
usually displays the text as a message, and then runs QUIT. If x is zero, the message
text is ignored and execution continues.
 <fatal error check> \ return non-zero on error
 ABORT”Fatal error”
In most modern Forth systems ABORT and ABORT” are implemented using THROW
below.

CATCH and THROW
Before the ANS specification, Forth lacked a portable nested exception handler. The
design of CATCH and THROW is excellent, and I recommend that they be used to
replace the use of ABORT and ABORT”, which can be defined in terms of CATCH
and THROW.

Description
The following description of the words CATCH and THROW was written by Mitch
Bradley.

CATCH is very similar to EXECUTE except that it saves the stack pointers before
EXECUTEing the guarded word, removes the saved pointers afterwards, and returns a
flag indicating whether or not the guarded word completed normally. In the same
way that a Forth word cannot legally play with anything that its caller may have put
on the return stack, and also is unaffected by how its caller uses the return stack, a
word guarded by CATCH is oblivious to the fact that CATCH has put items on the
return stack.

Here's the implementation of CATCH and THROW in a mixture of Forth and pseudo-
code:

VARIABLE HANDLER \ Most recent error frame

: CATCH \ cfa -- 0|error-code
 <push parameter stack pointer on to return stack>
 <push contents of HANDLER on to return stack>
 <set HANDLER to current return stack pointer>
 EXECUTE
 <pop return stack into HANDLER>
 <pop & drop saved parameter stack ptr from return stack>

Errors and exception handling

76

 0
;

: THROW \ error-code --
 ?DUP
 IF
 <set return stack pointer to contents of HANDLER>
 <pop return stack into HANDLER>
 <pop saved parameter stack pointer from return stack>
 <back into the parameter stack pointer>
 <return error-code>
 THEN
;

The description as written implies the existence of a parameter stack pointer and a
return stack pointer. That is actually an implementation detail. The parameter stack
pointer need not actually exist; all that is necessary is the ability to restore the
parameter stack to a known depth. That can be done in a completely standard way,
using DEPTH, DROP, and DUP. Likewise, the return stack pointer need not explicitly
exist; all that is necessary is the ability to remove things from the top of the return
stack until its depth is the same as a previously-remembered depth. This can't be
portably implemented in high level, but I neither know of nor can I conceive of a
system without some straightforward way of doing so.

Sample implementation
In most Forth systems, the following code will work:

VARIABLE HANDLER \ Most recent exception handler

: CATCH \ execution-token -- error# | 0
 (token) \ Return address already
 \ on data stack
 SP@ >R (token) \ Save data stack pointer
 HANDLER @ >R (token) \ Previous handler
 RP@ HANDLER ! (token) \ Set current handler to this
one
 EXECUTE () \ Execute the word passed
 R> HANDLER ! () \ Restore previous handler
 R> DROP () \ Discard saved stack pointer
 0 (0) \ Signify normal completion
;

: THROW \ ?? error#|0 -- ?? error# ;
\ Returns in saved context

 ?DUP
 IF
 HANDLER @ RP! (err#) \ Back to saved R.
 \ stack context
 R> HANDLER ! (err#) \ Restore previous handler
 (err#) \ Remember error# on
 \ return stack before
 (err#) \ changing data stack ptr.
 R> SWAP >R (saved-sp) \ err# is on return stack
 SP! (token) \ switch stacks back
 DROP ()
 R> (err#) \ Change stack pointer
 THEN
\ This return will return to the caller of catch, because
\ the return stack has been restored to the state that
\ existed when CATCH began execution.
;

Errors and exception handling

77

Features
In particular the following features of CATCH and THROW should be noted.

• CATCH and THROW do not restrict the use of the return stack

• They are neither IMMEDIATE nor "state-smart"; they can be used interactively,
compiled into colon definitions, or POSTPONEd without strangeness.

• They do not introduce any new syntactic control structures (i.e. words that must
be lexically "paired" like IF and THEN)

To handle the case where there is no CATCH to handle a THROW, it is wise to CATCH
the main loop of the application. A different solution, if you don't want to modify the
loop, is to add this line to THROW:

HANDLER @ 0= ABORT" Uncaught THROW"

Stack rules for CATCH and THROW
Let's suppose that we have the word FOO that we wish to "guard" with CATCH.
FOO's stack diagram looks like:

FOO \ a b c -- d

Here's how to CATCH it:

<prepare arguments for FOO> (-- a b c)
['] FOO CATCH
IF (-- x1 x2 x3)
 <some code to execute if FOO caused a THROW>
ELSE (-- d)
 <some code to execute if FOO completed normally>
THEN

Note that, in the case where CATCH returns non-zero (i.e. a THROW occurred), the
stack depth (denoted by the presence of x1, x2 and x3) is the same as before FOO
executed, but the actual contents of those three stack items is undefined. N.B. items
on the stack underneath those three items should not be affected, unless the stack
diagram for FOO, showing three inputs, does not truly represent the number of stack
items potentially modified by FOO.

In practice, about the only thing that you can do with those "dummy" stack items x1,
x2 and x3 is to DROP them. It is important, however, that their number be accurately
known, so that you can know how many items to DROP. CATCH and THROW are
completely predictable in this regard; THROW restores the stack depth to the same
depth that existed just prior to the execution of FOO, and the number of stack items
that are potentially garbage is the number of inputs to FOO.

Some more features
THROW can return any non-zero number to the CATCH point. This allows for
selective error handling. A good way to create unique named error codes is with
VARIABLEs as they return unique addresses without having to worry about which
number to use, e.g.

VARIABLE ERROR1
VARIABLE ERROR2

Errors and exception handling

78

creates two words, each of which returns a different unique number. For selective
error handling, it is convenient to follow CATCH with a CASE statement instead of an
IF. Here's a more complicated example:

BEGIN
 ['] FOO CATCH
 CASE
 0 OF ." Success; continuing" TRUE ENDOF
 ERROR1 OF ." Error #1; continuing" TRUE ENDOF
 ERROR2 OF ." Error #2; retrying" FALSE ENDOF
 (default) ." Propagating error upwards" THROW
 ENDCASE (retry?)
UNTIL

Note the use of THROW in the default branch. After CATCH has returned, with either
success or failure, the error handler context that it created on the return stack has
been removed, so any successive THROWs will transfer control to a CATCH handler at
a higher level. It is good practice to define a top level handler for all tasks. For an
interactive Forth, the terminal task includes this inside its main loop.

The CATCH and THROW scheme appealed to people because it is simpler than most
other schemes, as powerful as any (and more powerful than most), is easy to
implement, introduces no new syntax, has no separate compiling behaviour, and uses
the minimum possible number of words (two).

Error codes and return results
Forth words that perform heap requests and I/O to files and other devices, e.g.
OPEN-FILE, return an “I/O result”, abbreviated to ior in the ANS Forth
documentation. An ior is zero for success. THROW (n --) does nothing if n=0.
Your application should decide how to handle this ior if it is non-zero. Whether to
handle the error locally, e.g. retry, or whether to treat failure as a fatal error is your
decision.

If a memory request via ALLOCATE (size -- addr ior) fails, it may be
that another task is temporarily using memory. In this case it may be worth trying
every 20 ms for 100 ms to get the memory before triggering a fatal error. If a fatal
error occurs, you can THROW up a level. This leads in turn to the question of what
error code to use for the fatal THROW. In our experience, the best tactic is to use the
same codes for iors and for throw codes.

Let us define two versions of a protected version of ALLOCATE. The first treats all
failures as fatal, whereas the second tries to recover before causing a THROW.

: ProtAlloc \ size -- addr
 allocate throw \ all errors fatal
;

: ProtAlloc \ size -– addr
 0 0 \ dummy addr and ior
 5 0 do \ -- addr ior
 2drop \ discard previous results
 dup allocate \ -- size addr ior
 dup 0= \ exit loop on success
 if leave endif
 20 ms \ wait
 loop \ -- size addr ior ; try again
 rot drop \ -- addr ior

Errors and exception handling

79

 throw \ -- addr
;

These examples illustrate that, providing there are no side effects, you can radically
change the architecture of a word with no impact on the software outside it. By
THROWing using an ior as a throw code, your upper level error handler performs the
same action in both cases.

The general rule is that you try to handle recoverable errors locally, and fatal errors
cause a THROW. The handler for the next level up will THROW again if it cannot
handle the error. The top level error handler, such as the one in QUIT, processes all
errors.

The ANS standard reserves negative throw codes for the Forth system. In particular,
-1 and –2 are reserved for ABORT and ABORT” so that they can be implemented in
terms of THROW. Most modern Forths take this approach. A side effect of this is that
ABORT is no longer a system-wide warm restart.

Always clean up
Many operation perform a sequence that can be described as:
OPEN PROCESS CLOSE
or
SETUP OPERATE CLEANUP
If PROCESS or OPERATE encounter a fatal error, they may THROW. If you do not
perform the termination operations, your application may become unstable. This is
particularly true of long-running embedded systems and server applications such as
firewalls. We used to reboot our email server PC every month or so to recover from
memory leaks (unreleased memory allocations). The following code ensures that the
CLOSE operation above is always performed:
: DOIT
 ...
 OPEN [‘] PROCESS CATCH CLOSE THROW
 ...
;
The ior returned by CATCH is consumed by the THROW after CLOSE has been
executed, and if the ior is non-zero another THROW will occur. In this way, the
CLOSE operation is always performed, and problems such as memory leaks and open
files will be removed.

81

13 Files

ANS File Access Wordset
The basis for all file operations comes from the ANS specification wordset for Files.
The following group of definitions are implementations of the ANS standard set.

The following data types are used:

fam "File Access Method", describes read/write permission etc.

ior "IO Result", A return result from most IO calls, this value is 0 for
success or non-zero as an error-code.

fileid "File Identifier", a handle for a file.

Table 1 : File access data types

Bin \ fam -- fam’
Modify a file-access method to include BINARY.

r/o \ -- fam
Get ReadOnly fam.

w/o \ -- fam
Get Writeonly fam.

r/w \ -- fam
Get ReadWrite fam

CREATE-FILE \ c-addr u fam -- fileid ior
Create a file on disk, returning a 0 ior for success and a file id.

OPEN-FILE \ c-addr u fam -- fileid ior
Open an existing file on disk.

CLOSE-FILE \ fileid -- ior
Close an open file.

WRITE-FILE \ caddr u fileid -- ior
Write a block of memory to a file.

WRITE-LINE \ c-addr u fileid -- ior
Write data followed by EOL. IOR=0 for success.

READ-FILE \ caddr u fileid -- u2 ior
Read data from a file. The number of character actually read is returned as u2,
and ior is returned 0 for a successful read.

Files

82

READ-LINE \ c-addr u1 fileid -- u2 flag ior
Read an ASCII line of text from a file into a buffer, without EOL. Read the
next line from the file specified by fileid into memory at the address c-addr. At
most u1 characters are read. Up to two line-terminating characters may be read
into memory at the end of the line, but are not included in the count u2. The
line buffer provided by c-addr should be at least u1+2 characters long.

If the operation succeeds, flag is true and ior is zero. If a line terminator was
received before u1 characters were read, then u2 is the number of characters,
not including the line terminator, actually read (0 <= u2 <= u1). When u1 =
u2, the line terminator has yet to be reached.

If the operation is initiated when the value returned by FILE-POSITION is
equal to the value returned by FILE-SIZE for the file identified by fileid,
flag is false, ior is zero, and u2 is zero. If ior is non-zero, an exception
occurred during the operation and ior is the I/O result code.

An ambiguous condition exists if the operation is initiated when the value
returned by FILE-POSITION is greater than the value returned by FILE-
SIZE for the file identified by fileid, or if the requested operation attempts to
read portions of the file not written.

At the conclusion of the operation, FILE-POSITION returns the next file
position after the last character read.

FILE-SIZE \ fileid -- ud ior
Get size in bytes of an open file as a double number, and return ior=0 on
success.

FILE-POSITION \ fileid -- ud ior
Return file position, and return ior=0 on success.

REPOSITION-FILE \ ud fileid -- ior

Set file position, and return ior=0 on success.

RESIZE-FILE \ ud fileid -- ior
Set the size of the file to ud, an unsigned double number. After using
RESIZE-FILE, the result returned by FILE-POSITION may be invalid.

FLUSH-FILE \ fileid –- ior
Attempt to force any buffered information written to the file referred to by
fileid to be written to mass storage. If the operation is successful, ior is zero.

DELETE-FILE \ c-addr u -- ior
Delete a named file from disk, and return ior=0 on success.

INCLUDE-FILE \ file-id --
Include source code from an open file whose file-id (handle) is given. After
INCLUDE-FILE has executed the file will have been closed.

INCLUDED \ c-addr u --
Include source code from a file whose name is given by c-addr/u.

Files

83

INCLUDE \ "<name>" --
A more convenient form of INCLUDED. Use in the form "INCLUDE
<name>". This word is not part of the ANS standard, but is widely available.
Also called FLOAD in some systems. Under operating systems that support
spaces in file names, you may be able to use the forms:
INCLUDE “my file.f”
INCLUDE ‘my file.f’

Simple file tools
This example is derived from code by Wil Baden in his ToolBox series. It covers
what is required when loading a complete file into memory and writing a memory
block to a file.

\ *************
\ *S File tools
\ *************

: FILE-CHECK \ n --
 ABORT" File Access Error "
;

: MEMORY-CHECK \ n --
 ABORT" Memory Allocation Error "
;

: rewind-file \ file-id -- ior
 0 0 rot reposition-file
;

0 value pData \ -- addr ; poi to data block
0 value /Data \ -- n ; size of data block
0 value hData \ -- handle ; handle of data file

: InitReadFile \ handle -- size
\ *G Reset the file to the start and return its size.
 dup rewind-file file-check
 file-size file-check drop
;

: OpenMouth \ caddr len --
\ *G Open the file for read only.
 r/o open-file file-check dup to hData
 InitReadFile to /Data
;

: guzzle \ file-id -- addr length
\ *G Reads file from disc to HERE without ALLOTing space.
\ ** The file is left open.
 dup InitReadFile \ -- handle len
 here swap rot read-file file-check \ -- #read
 here swap \ -- addr #read
;

: slurp \ file-id -- addr length
\ *G Reads the contents of a file into ALLOCATEd memory
\ ** and returns the address and length. Release the
\ ** memory using BURP.

Files

84

 dup InitReadFile \ -- handle len
 dup allocate memory-check \ -- handle len addr
 dup to pData dup >r swap rot \ -- addr len h ; R: -- addr
 read-file file-check \ -- #read
 r> swap \ -- addr #read
;

: Hiccup \ --
\ *G Close the file opened by OpenMouth.
 hData close-file file-check
;

: BURP \ --
\ *G Release memory ALLOCATEd by SLURP.
 pData free memory-check
;

: Spit \ caddr len name namelen --
\ *G Write the memory defined by caddr/len to the file
\ ** whose name is given by name/namelen. A THROW occurs
\ ** on any error.
 r/w create-file throw >r \ create
 r@ write-file throw \ write
 r> close-file throw \ close
;

85

14 Common extensions

Multitasking
Multitasking has been part of Forth for a very long time, and support for it is built
into the kernel at the lowest levels. Many systems even reserve a CPU register as a
task pointer.

Unfortunately, the ANS 1994 Forth standards team was unable (worn out, not
enough time) to reach a consensus on multitasking and therefore this chapter can
only sketch out the principles and use vendor-specific examples. Despite this, the
approach taken by most vendors and implementers is broadly similar.

Cooperative and Preemptive taskers
In general, hosted systems for operating systems such as Windows, Linux and other
Unices take advantage of operating system services. Commercial vendors who also
support embedded systems often provide a wrapper layer to provide some source
code compatibility with embedded system practice. The multitaskers for operating
systems are nearly always pre-emptive - triggered by an interrupt.

Forth embedded systems mostly use cooperative (sometimes called round-robin)
multitaskers. In these, programmers have to call a word, usually called PAUSE,
which schedules the next task. Some Forth programmers do use pre-emptive
multitaskers, and these are usually based on cooperative schedulers extended to limit
the time slot used by a single task. A few fully preemptive systems have been
written.

The choice between the two types comes down to the application domain. Embedded
systems can have very heavy CPU loadings and the overheads of a preemptive
scheduler may not be suitable. In a heavily loaded system, the simplicity (and hence
performance) of a cooperative scheduler can lead to higher service levels than are
available from a preemptive scheduler. However, this leads to lack of features which
an operating system programmer feels naked without. Provided that you take the
trouble to learn the Forth cooperative multitasker and apply a few simple rules, the
Forth cooperative multitasker is a wonderfully effective lightweight scheduler.

A four-axis bomb-disposal machine ran twelve tasks using the standard MPE
scheduler, and we have heard of systems with up to 400 tasks.

USER variables
The equivalent of what Windows programmers call “thread-local storage” is
provided by USER variables, usually defined in the form:

offset USER <name> \ -- addr

A USER variable returns its address. Each task has its own USER variable area.
Consequently, commonly used system variables such as BASE can be set
independently for each task. Similarly, each task can have its own communications
channel, e.g. in an intelligent serial card handling different protocols. To ease
definition of task-specific buffers, and to reduce programmer thinking time, many
systems maintain a count of the used size of the USER area and provide a facility to
add a buffer.

Common extensions

86

size +USER <name> \ -- addr

USER variables are often also provided for high-level interrupt handlers in embedded
systems and for operating system callbacks (user-supplied routines called by the
operating system). Many Forth implementers consider USER variables to be so
important that they dedicate a machine register to hold the base address of the USER
area.

Simple Forth tasks
Before any tasks can be activated, the multitasker must be initialised. This is done
with the following code:

INIT-MULTI

The word INIT-MULTI initialises all the multitasker's data structures and starts
multitasking. This word need only be executed once in a multitasking system and is
usually done automatically at power up.

#1000 VALUE DELAY \ -- n ; time delay between #'s

: ACTION1 \ -- ; task to display #'s
 [CHAR] $ EMIT \ Display a dollar ($)
 BEGIN \ Start continuous loop
 [CHAR] # EMIT \ Display a hash (#)
 DELAY 0 \ Reschedule Delay times
 ?DO PAUSE LOOP
 AGAIN \ Back to the start ...
;

If we wanted to wait a specific time there is a word MS (u --) which waits the
given number of milliseconds. In this case we replace the code

 DELAY 0 \ Reschedule Delay times
 ?DO PAUSE LOOP

with

 DELAY MS \ wait x milliseconds

To activate (run) the example task, type:

TASK TASK1
‘ ACTION1 TASK1 INITIATE

This will activate ACTION1 as the action of task TASK1. Immediately you will see a
dollar and a hash ($#) displayed. If you press <return> a few times, you notice that
the Forth interpreter is still running. After a while another hash will appear. This is
the example task working in the background. You can kill the task using

TASK1 TERMINATE

Most Forth systems provide facilities to stop a task temporarily, to restart it and to
send messages to tasks.

I/O and PAUSE
Any I/O operation that has to wait should call PAUSE inside its polling loop so that
other tasks are not stalled. The input word KEY (-- char) nearly always
contains PAUSE. Whether KEY? (-- flag) calls PAUSE is system dependent.

Common extensions

87

My preference is only to call PAUSE when no input is available. This optimises
system throughput under heavy load by reducing the overall number of PAUSEs, but
may require additional code if an I/O activity can cause overload. The sample
implementation of KEY uses KEYPRIM (-- char), a primitive word that
blocks.
: key \ -- char
 begin
 key? 0=
 while
 pause
 repeat
 keyprim
;

Error checking
The most common fault is a stack fault. Since a task is an endless loop it is simple to
put stack depth checks in the main loop. A simple task with checking is shown
below.

: TASK-ACTION \ --
 sp@ s0 ! \ store stack base
 <initialisation>
 BEGIN
 <body of task>
 depth IF \ non-zero if anything there
 s0 @ sp!
 <warn programmer!>
 ENDIF
 PAUSE
 AGAIN
;

You should also consider checking for THROWs.

: StackCheck \ ?? --
 depth if \ non-zero if anything there
 s0 @ sp! <warn programmer!>
 then
;

: TASK-ACTION \ --
 sp@ s0 ! \ store stack base
 <initialisation>
 BEGIN
 [‘] BodyOfTask catch if
 <warn programmer!>
 then
 StackCheck
 PAUSE
 AGAIN
;

Floating point
ANS Forth standardises floating point handling within a framework which leaves
some flexibility for the implementer. See the ANS Forth standard for more details.

The internal storage format of floating point numbers is not defined by the standard
as being IEEE format because of the number of non-IEEE formats in use, especially
by DSP (Digital Signal Processing) chips.

Common extensions

88

Many implementations do not keep floating point numbers on the Forth data stack.
Instead they use a separate floating point stack in memory to avoid stack gyrations or
they use the internal stack of a hardware floating point engine such as the NDP of
Intel desktop PCs. This is referred to as a separate float stack. Using the Forth data
stack is referred to as a combined stack.

Traditionally Forth programmers have used floating point less than C programmers.
Forth’s facilities for mixed and double integer made it easy to construct multiple
precision operators. This situation has changed after the floating point performance
of desktop PCs improved to the point that some floating point operations are now
faster than some integer operations. However, this does not mean that floating point
is suitable for all applications requiring a very wide dynamic range. Floating point
calculations can suffer from imprecise calculation and rounding errors. During the
construction of the Hong Kong airport, it was reported that the cost difference in the
estimation for one part of the concrete was over ten million dollars between a
calculation using 128 bit integers and a calculation using 64 bit floats. The integer
calculation was the accurate one.

Anton Ertl had this to say about the concrete calculation. His comments emphasize
the point that use of floating point can require caution with any programming
language.

“About the concrete calculations: The total volume of the project was probably on
the order of 1,000-10,000 million dollars, so an error of 10 million is 0.1%-1%.
That's not the result of plain floating-point rounding errors (which are on the order
of 1e-16 for 64-bit FP operations), or even accumulated errors (it would need 1e13
FP operations with worst-case rounding error accumulation to get there, or 1e26 FP
operations with expected error accumulation). It's the result of a numerically
unstable algorithm.

FP is probably more surprising to programmers in that respect than fixed point,
though; e.g., if you calculate using integer numbers, you know that you will never get
any fractional result, whereas it surprises programmers when this happens with FP
numbers.”

The Forth Scientific Library (FSL) project originally coordinated by Skip Carter
provides a huge range of scientific calculation routines, mostly using floating point.
The FSL is supplied as part of several systems.

Local variables
A set of words for local variable handling is provided by ANS Forth. Sadly, the
standard does not provide what is required for interfacing with operating systems
such as Windows, especially in handling local arrays. It also uses a very clumsy
notation that is hard to read. However, it did follow practice of the time. The most
popular alternative notation is described below. Not all systems provide it and
several variants exist.

MPEism: The description below is of the MPE implementation, which is broadly
similar to many others.

The sequence
: <name> { ni1 ni2 ... | lv1 lv2 ... -- o1 o2 }
 …
;
defines named inputs, local variables, and outputs. The named inputs are
automatically copied from the data stack on entry. Named inputs and local variables

Common extensions

89

can be referenced by name within the word during compilation. The output names
are dummies to allow a complete stack comment to be generated.

• The items between { and | are named inputs.

• The items between | and -- are local variables.

• The items between -- and } are outputs.

Named inputs and locals return their values when referenced, and must be preceded
by TO to perform a store, or by ADDR to return the address.

Arrays may be defined in the form:

 arr[n]

Any name ending in the '[' character will be treated as an array, the expression up to
the terminating ']' will be interpreted as the size. Arrays always return their base
addresses, all operators are ignored.

In the example below, a and b are named inputs, a+b and a*b are local variables,
and arr[is a 10 byte array.
: foo { a b | a+b a*b arr[10] -- }
 arr[10 erase
 a b + to a+b
 a b * to a*b
 cr a+b . a*b .
;

Cautionary notes
In the following discussion the term “Forth locals” refers to both named inputs and
local variables.

Writing C in Forth: Although use of Forth locals can be valuable for local arrays
and readability, there is a great danger for C programmers learning Forth to overuse
them. There are some in the Forth community who believe that local variables have
no place in a course or text until the second or third level. I have seen enough Forth
that looks like C to know that there is a real problem. Because of the benefits when
interfacing to modern operating systems and in certain classes of problems, I
reluctantly decided to include them.

Excessive use of Forth locals inhibits learning how to use the data stack efficiently
and reduces the incentive to factor into small definitions. In turn, that leads to "cut
and paste" errors and to bigger code, which further leads to difficulties in
maintenance and debugging. I also note that programmers who use Forth locals
heavily tend not to use defining words and other more advanced Forth techniques.

Performance: The Forth virtual machine is optimised for two stacks, and the code
generation of modern Forth compilers reflects this. Especially on CPUs with more
than eight registers, good stack code is faster and smaller than code with heavy use of
local variables.

I recently overhauled parts of a TCP/IP stack and removed Forth locals where
possible. After testing on an ARM (16 registers) embedded system, the size of
rewritten words reduced by 20% and performance improved by 50%. In particular
cases code size reduced by 50% or more. Code size improves because the compiler
makes better use of CPU registers and performance improves because of smaller
code and reduced memory traffic. Although less dramatic we have similar results for

Common extensions

90

most CPUs. For CPUs with 32 or more registers, e.g SPARC and PowerPC, Forth
compiler writers can easily use registers for local variables.

Writers of Forth compiler are unlikely to put in a huge effort to optimise bad code.
After an earlier release of this book, the following comments were made on the
comp.lang.forth newsgroup comparing C and Forth compilers.

Anton Ertl: “You might be surprised; as long as the bad code occurs in sufficiently
important benchmarks, they are very likely to put in a huge effort. However, in the
case of Forth, optimizing stack code will benefit all the code out there (including
code using locals), whereas optimizing locals will only benefit a minority of code; it
should come as no surprise that Forth compiler implementors will concentrate on
optimizing stack accesses first.”

Andrew Haley: “Well, it's not just that: we can't tell whether the ‘bad’ code has been
written by a programmer or is the output of a previous compilation pass. So, we
optimize everything we can, even if it's something no sane programmer would ever
write.”

Avoiding locals: The main reason that people feel they need locals is having too
many items in use on the data stack. There are three ways to avoid this:

1) Re-factor into small definitions that use fewer items on the stack,

2) Use the return stack to hold the least commonly used items,

3) Where items are pairs or larger, for example x/y coordinate pairs for points or
x/y/w/h sets for a rectangle description, consider keeping them in structures and
passing pointers to the structures. Although pointers increase memory traffic,
they considerably reduce stack traffic at word entry and exit.

We rewrote an embedded GUI package after a client requested changes. The original
code had been written with extensive use of Forth locals. After reorganisation and
overhaul, only one word used local variables. The code is shorter both in terms of
lines of source code and in terms of compiled code size. The code is easier to
maintain.

When to use locals:

1) To avoid stack repetition of complex calculations. Some calculations have
common sub-expressions with reused intermediate results. Storing these on
either stack can lead to “stackrobatics”. In performance and code size, local
variables are cheap compared to named inputs. Defining local variables for these
can be very effective.

2) For temporary small buffers. The alternatives to local buffers are a heap, global
or task-based (thread local) structures. Although heap functions are widely
available and standardised, they require code, have performance and reliability
penalties (heap leaks are not unknown in any language) and require great care in
exception handling. Local buffers are automatically discarded on exit from a
word, and, in every Forth implementation I have inspected, they are completely
compatible with CATCH and THROW.

Object oriented programming
A plethora of object oriented extensions exist for Forth ranging from 16 to several
thousand lines of source code. The Neon (later Actor) OO programming language
was itself written in Forth. This model has probably been the most widely used and is

Common extensions

91

available for several desktop Forth systems. Embedded system models also vary
widely.

There is not yet enough common practice to make further examples and discussion
worthwhile.

Integrated assembly
The majority of Forth systems written for a specific CPU (not written in another high
level language) include an assembler for the CPU and facilities to create words
written entirely in assembler. Such words are called CODE words. As with C
compilers there is a wide variety of notations and operand orders.

CODE definitions were widely used by indirect (ITC) and direct-threaded (DTC)
systems to improve the performance of performance-critical inner loops. With
optimising native code compilers this is far less necessary. Our Windows Forth uses
only about 30 routines coded in assembler, mostly to do with start up and interfacing
with the operating system. In embedded systems, CODE routines are reserved for
accessing special CPU registers such as the status register (e.g. for interrupt enabling
and disabling), for the occasional interrupt handler, and for the scheduler in the
multitasker.

The embedded systems chapter contains several examples of CODE definitions.

Source location
As applications get larger, the ability to browse source code rapidly becomes more
important. Many Forth systems provide a way to find the source code of a word,
typically using a phrase such as
LOCATE <name>
SEE <name>
VIEW <name>
where <name> is the name of the word whose source code is required. The source
code is usually displayed by an internal or external editor. If the source code is not
available, the code may be disassembled or decompiled.

Mixed language programming
It is a sin to reinvent the wheel unless it is just for the pleasure of exploration.
Perfectly good code exits in a wide range of languages. Reusing code is usually
cheaper than rewriting it. For Forth systems running under an operating system the
most common solution is to provide an interface to shared libraries or Windows
DLLs, commonly the same mechanism required to access the operating system itself.
For embedded systems, the issues revolve around object file formats.

Parameter passing
The first issue is to work out how to translate Forth stack items into the form required
by the other language. We will use the basic Windows SendMessage API call as an
example.
int PASCAL SendMessage(
 HWND hwnd, WORD msg, WPARAM wParam, LPARAM lParam
);

To call this from Forth, we can define it in two ways.

Common extensions

92

SendMessage \ hwnd msg wparam lparam -– int

or

SendMessage \ lparam wparam msg hwnd -– int

Which choice you make affects how the Forth parameters have to be organised when
they are passed to the C system. Depending on the operating system and compiler,
parameters are passed in registers or on a stack. If parameters are passed in registers,
e.g. ARM or SPARC CPUs, there will be a limit on the number that are passed in
registers, and additional parameters will be passed on a stack. The order in which
parameters are passed will depend on the language.

The next stage is to write an interface routine which takes the parameters from the
Forth data stack and an address to call, performs the call, and finally returns the
result if there is one. We usually call this routine XCALL. These interface routines
require the use of specific CPU registers and so are best written in assembler. It is
well worth while writing a Forth defining word or custom parser to handle defining
the Forth side of the call. How you do this will influence how you write the interface
routine or routines and you should design and code them together.

For readability, it is common to keep the Forth stack order and C parameter order
visually the same in order to reduce programmer typing errors.

DLLs and shared libraries
Once you have decided on the parameter passing and notation, you then have to
determine how to load the library, find the address of a routine in a shared library,
and release the library. This is operating system dependent and often requires a
special section in the executable file. Operating system documentation at this level is
often badly organised, tedious and obscure. For Windows, the API routines you need
are called LoadLibrary, GetProcAdress and FreeLibrary.

Once you have these three functions, you can now make a routine that searches for
functions by name (probably case sensitive) and saves the function addresses in the
right places. Your defining word or parser can produce the right data for the XCALL
routine above. A typical Forth definition for SendMessage above could be:

4 1 libfunction: SendMessage

which defines that there are four input parameters and one output. Since most C
functions always return a value it is not uncommon to omit the output parameter. If
you are using a custom parser to handle interfacing, you can go as far as:
EXTERN: int PASCAL SendMessage(
 HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam
);
which is the MPE VFX Forth description of the SendMessage API call.

Static linking
In an embedded system with no operating system, you will have to do the work of
linking and relocation yourself. This requires processing compiler object files and
link maps. It can be done, but is compiler specific and always tedious. It is only
recommended if you can only get a library as an unlinked object file. The general
process is:

1) Define the parameter passing and interface routine as above,

Common extensions

93

2) Work out how to perform relocation,

3) Work out how to get to the procedure names and find the function addresses,

4) Define the Forth interface to each function,

5) Sort out the start up requirements of the library – this can be a major pain.

6) Combine the Forth and C binaries.

The biggest maintenance issue here is that if you receive a new version of the object
library, you will have to go through stages 3) to 5) all over again. Far and away the
simplest approach is use the jump table approach below.

Jump tables
The basis of this approach is to provide a table of function addresses in the C module
and link it at a fixed address. The Forth interface requires the same XCALL routines
as in the previous approaches. Forth calls the relevant fixed address in the table. No
relocation is required as the C linker has done this for you. In many cases, calling a
dummy main function from Forth at power up will avoid most of the initialisation
problems. You can always add explicit initialisation into main.

What you lose from this approach is memory because you have separated and fixed
the Forth and C binaries. You lose memory for the table itself and you may lose a
few clock cycles more in performing the call. To avoid compiler issues, you are
likely to have to write the function table in assembler. However, simplicity and
reliability make jump tables the approach of first choice for embedded systems.

95

15 Embedded Systems

The major difference between embedded system programming and programming for
an operating system is that you have to do everything yourself. You have to be able
to specify exact memory locations for ROM, Flash, RAM and peripherals. You are
also likely to be tightly constrained by limited RAM and an underpowered CPU. You
will become very good at re-reading large datasheets and treating their contents with
some scepticism.

Code for embedded systems is usually cross-compiled on a PC and the final code is
downloaded to the target system. Forth cross compilers vary widely in capabilities
and code generation quality. However, the commercial vendors supply cross
compilers for a very wide range of CPUs and hardware implementations. Forth cross
compilers are also used when porting hosted Forths between operating systems, e.g.
from Windows to Linux. Cross compilers can usually generate a complete Forth
interpreter and compiler on your target system, or can compile a cut-down system
which is interactively debugged over a serial line or other channel. These Umbilical
(or tethered) systems are discussed later in this chapter.

Embedded systems programming is an area in which Forth scores very well. The use
of interactive debugging directly on the target permits very rapid development and
considerably reduces the need for additional (and expensive) tools such as In-Circuit
Emulation (ICE). We brought up a large StrongARM SA-1110 system using a JTAG
Flash programmer, an oscilloscope and a soldering iron. With more modern CPUs
that incorporate a boot loader, the JTAG programmer can be dispensed with.

Apart from controlling a mass spectrometer, this StrongARM system has an Ethernet
connection and runs a full TCP/IP stack and multi-threaded web server with CGI and
ASP. Embedded Forth is not just for little systems.

Although Forth cross compilers vary widely, there is a draft ANS Forth cross
compiler standards proposal by Elizabeth Rather which has been adopted by
MicroProcessor Engineering and Forth Inc and some others. The proposal was the
result of both companies working on parts of the same project. This chapter assumes
the use of the proposed standard. This text is somewhat informal, so for definitive
definitions consult the PDF files on the CD.

Defining and using memory
Embedded systems require at least three types of memory; code in ROM or Flash,
normally read-only; RAM that is initialised at power up or reset; and RAM that is
uninitialised at power up or reset. These three types are known as CDATA, IDATA,
and UDATA respectively in ANS terminology.

xDATA \ --
Select this type of memory as the one to operate on next. This will affect the
operation of the words listed below.

, (comma) ALIGN ALIGNED ALLOT C, HERE UNUSED

The defining word SECTION (start end --) creates a word known only to
the cross-compiler (not to the target code) that names a piece of memory.
HEX
8000 FFFF CDATA SECTION PROGRAM \ Program in Flash

Embedded Systems

96

0800 08FF IDATA SECTION IRAM \ Initialized RAM
0900 0BFF UDATA SECTION URAM \ Uninitialized RAM
0400 07FF UDATA SECTION EEPROM \ Uninitialised EEPROM
0000 01FF UDATA SECTION PERIPHS \ peripherals
DECIMAL
Most cross compilers attach the used portion of the IDATA images to the end of a
CDATA section and the start up code will copy it into RAM. UDATA sections will not
be modified at start up unless you place stacks and other data there.

Other vendor-specific functions are available to support pages/banks of memory for
CPUs such as the 9S12 and Rabbit 8/16 bit CPUs.

Referencing a section name during interpretation makes that section the current
section of that type and selects the type as the current type.
DECIMAL
IRAM
42 value answer \ -- n ; from previous question
URAM
#100 buffer: databuff \ -- addr ; uninitialised
EEPROM
variable BaudRate \ -- addr ; holds baud rate
variable UPort \ -- addr ; holds UART port address
CDATA
Create Powers2 \ -- addr ; powers of two
 $01 c, $02 c, $04 c, $08 c,
 $10 c, $20 c, $40 c, $80 c,
The example above declares different variables in specific RAM sections, and a data
table in the current CDATA section. If your cross compiler forces VARIABLEs to be
in IDATA, try either of the following:
create BaudRate cell allot \ -- addr ; holds baud rate
cell buffer: BaudRate \ -- addr ; holds baud rate

Harvard targets
Some CPUs, notably 8051, Z8 and many DSPs use a Harvard architecture in which
code and data are in separate address spaces. For some of these architectures, e.g.
8051, code space is not writable by CPU instructions. For these systems CDATA
corresponds to the code address space, and IDATA and UDATA to the data address
space.

Memory access words that access code space are usually called
 c@c w@c @c c!c w!c !c cmovec

Compiler and Interpreter extensions
Forth cross-compilers allow you to extend the compiler/interpreter itself by
controlling where new words are placed. After cross-compilation is started, all new
words are placed by default into the target image. The following directives control
where new words are placed.

Embedded Systems

97

Directive and
corresponding
vocabulary

Action

TARGET
*TARGET

New words are placed in the target image

Conceptual search order: *TARGET

COMPILER
*COMPILER

New words are added to the cross-compiler’s compile
time behaviour. These words act like IMMEDIATE
words in conventional Forth, but are not available during
interpretation. All memory access words refer to the
target.

Conceptual search order: *COMPILER *HOST

INTERPRETER
*INTERPRETER

New words are added to the cross-compiler’s interpret
time behaviour. These words are not available during
compilation. All memory access words refer to the
target. See the next section on defining words for details
of the actions for defining words using CREATE …
DOES> or CREATE … ;CODE.

Conceptual search order: *INTERPRETER *HOST

ASSEMBLER
*ASSEMBLER

New words are added to the cross-compiler’s assembler.
This directive is usually used to add macros to the
assembler. Also searches the INTERPRETER words.

Conceptual search order: *ASSEMBLER
*INTERPRETER *HOST

HOST
*HOST

Exposes the underlying host portion of the cross-
compiler so that utility words can be added that will be
used later by words defined using COMPILER
INTERPRETER or ASSEMBLER. Use of this mode is at
your own risk. Finish this mode with TARGET.

Conceptual search order: *HOST

Table 2: Compiler extension directives

It is a convenient conceptual model to regard these directives as corresponding to
vocabularies called *TARGET *COMPILER *INTERPRETER *ASSEMBLER and
*HOST. The table shows the conceptual search order generated by the directives.

Defining words
Defining words can be handled in two ways, in some cases automatically by the
cross-compiler, or explicitly using the extension mechanism discussed above. The
objectives behind the two mechanisms are different.

The automatic mechanism aims to be transparent, so that code for the cross-compiler
can be the same as that for a hosted Forth. This encourages portability and makes the
cross-compiler easier to use for the majority of defining words. The automatic
mechanism copes with the majority of defining words.

Embedded Systems

98

The explicit mechanism provides very fine control of the host and target
environments, but can be more confusing to use.

Automatic handling

MPEism: Note that not all cross compilers support automatic handling of defining
words. The examples here are written for the MPE Forth 6 cross compiler.

The cross-compiler will automatically build an analogue of the defining word in the
host’s conceptual *INTERPRETER vocabulary up to the terminating ; DOES> or
;CODE. This is triggered by the word CREATE. Consequently, any code between the
: and the CREATE will not have a host analogue. The words between CREATE and
the terminating DOES> or ;CODE must either be in the *INTERPRETER
vocabulary or must be target constants or variables, which allows construction of
linked lists that refer to target variables.

A target version of the defining portion up to DOES> or ;CODE is built if the target
words has heads.

The run-time portion of the code is always placed in the target.

Construction of the host analogue is inhibited between the directives such as
TARGET-ONLY and HOST&TARGET.

Both the defining words below can be handled automatically by MPE cross-
compilers

: CON \ n -- ; -- n ; a constant
 CREATE
 ,
 DOES>
 @
;

VARIABLE LINKIT \ exists in target

: IN-CHAIN \ n -- ; -- n ; constants linked in a
chain
 CREATE
 , \ lay down value
 HERE LINKIT @ , LINKIT ! \ link to previous
 DOES>
 @
;

Explicit handling

Explicit handling uses the compiler directives discussed in the previous section to
control how defining words are created. This is particularly useful for more complex
words, and where no target version of the defining word is required, as is often the
case when an Umbilical Forth target is being used.

The examples from the automatic handling section are repeated here using the
explicit mechanism. The words @(H) and !(H) are used because LINKIT2 is in
the host.

INTERPRETER

: CON \ n -- ; -- n ; a constant
 CREATE
 ,

Embedded Systems

99

 DOES>
 @
;

VARIABLE LINKIT \ exists in target

: IN-CHAIN \ n -- ; -- n ; constants linked in a
chain
 CREATE \ only in host
 , \ lay down value
 HERE LINKIT @ , LINKIT ! \ link to previous
 DOES> \ run time in target
 @
;

HOST

VARIABLE LINKIT2 \ exists in host

INTERPRETER

: IN-CHAIN2 \ n -- ; -- n ; link variable in host
 CREATE \ in host
 ,
 HERE LINKIT2 @(H) , LINKIT2 !(H)
 DOES>
 @
;

TARGET

As can be see from the examples above, the automatic handling mechanism is
simpler, but the explicit handling mechanism permits finer control over where code
is generated, which may be useful when defining words are required and the absolute
minumum of target memory is to be used.

Compiler macros
There are often occasions in which short pieces of code are repeated, but should
really be compiled inline to allow the code generator to optimise them further or to
avoid a call/return performance penalty. The following example is useful for stepping
through an array of integers.

: @++ \ addr -- addr+cell x
\ Fetch the contents of addr and increment addr.
 dup @ swap cell + swap
;

: !++ \ addr x -- addr+cell
\ Store x at addr and increment addr.
 over ! cell +
;

You can extend the compiler to treat these as macros as follows:

compiler

: @++ \ addr -- addr+cell x
 dup @ swap cell + swap
;

: !++ \ addr x -- addr+cell
 over ! cell +

Embedded Systems

100

;

target

When the following code is compiled, the macros will be expanded, regardless of
whether or not target definitions of @++ and !++ already exist.

: CopyInts \ src dest #ints --
 0 ?do \ -- src dest
 swap @++ rot !++
 loop
 2drop
;

I/O ports
Memory mapped I/O is handled using the normal Forth memory operators. In some
cases, peripherals are reset by reading a register and discarding the result:

<address> @ drop

Extremely aggressive compilers, e.g. the MPE 68xxx and 386 VFX compilers, can
optimise such phrases away. In these cases, synonyms such as P@ in place of @ (‘P’
for Port) will be available that cannot be optimised away.

Where code such as device drivers is intended to be portable across different
hardware, use of port access words makes portability much easier when code is
moved to a CPU with a separate I/O space, e.g. Rabbit or 386. The standard port
access words are:

PC@ PW@ PL@ P@ PC! PW! PL! P!

The C/W/L denote 8/16/32 bit access and P@ and P! denote a native cell. For
memory mapped systems you can always alias these words to an existing word using
compiler macros.

All Forth cross compilers we have come across (at least for embedded work) provide
a facility to name a number. This permits the names of numbers to be held in the
compiler without using any space in the target except when used, in which case they
will treated just like the number they represent. They are equivalent to conventional
assembly language equates and are defined like CONSTANTs.

<value> EQU <name>

Interrupt handlers
Because of the wide variety of CPU architecture and peripherals, it is in practice
almost impossible to provide a universal word set for interrupt handlers. For
example, vectored interrupt controllers for ARMs come in at least four forms.
However, the principles are essentially the same for all CPUs.

For any interrupt you must first of all decide whether to use an assembler coded
interrupt service routine or a high level Forth routine. High-level interrupt service
routines take more instructions (and CPU time) to set up, but are very convenient to
use.

The phrases of the form:

[TASKING?]

Embedded Systems

101

in a definition temporarily turn off the compiler to interpret TASKING? in the
middle of the word. The flag returned is used the immediate words [IF] [ELSE]
and [THEN] for conditional compilation.

Assembler interrupt
The following example is for an MSP430 running at 32kHz.
variable rx0-char \ -- addr ; low byte holds KEY character
rx0-char 1+
 equ rx0-avail \ high bye holds KEY? flag

proc Rx0-isr \ --
 mov .b & u0rxbuf & rx0-char \ stash character
 mov .b # -1 & rx0-avail \ flag character available
 bic # _cpuoff 0 (sp) \ return with cpu active
 reti
end-code
rx0-isr USART0rx_vec ! \ set vector

code init-ser \ --
 or .b # $c0 & me1 \ enable USART0 tx and rx
 or .b # $30 & u0tctl \ baud rate source is smclk
 mov .b # $a1 & u0br0 \ 9600 baud
 mov .b # $01 & u0br1
 mov .b # $03 & u0mctl
 mov .b # $30 & u0ctl \ 8N2, clear reset
 or .b # $30 & p3sel \ P3.4,5 = USART0 TXD/RXD
 or .b # $10 & p3dir \ P3.4 output dirction
 mov # 0 & rx0-char \ no characters received yet
 bis .b # $40 & ie1 \ enable UART 0 RX interrupt
 bic .b # $80 & BCSCTL1 \ XT2 = HF XTAL
 bis .b # $88 & BCSCTL2
 eint \ global enable interrupts
 ret
end-code

: key?0 \ -- flag ; true if USART0 received a character
 rx0-avail c@ 0<>
;

: key0 \ -- char ; wait for character from USART0
 begin
 di rx0-avail c@ 0=
 while
[tasking?] [if]
 ei pause \ schedule
[else]
 \ cpu to sleep, GIE set
 [asm bis # _cpuoff _gie + sr asm]
[then]
 repeat
 rx0-char c@ 0 rx0-avail c!
 ei
;

: emit0 \ char -- ; send character through USART0
 begin u0tctl c@ 1 and until \ wait for empty buffer
 u0txbuf c! \ write buffer

Embedded Systems

102

;

: type0 \ c-addr len --
 bounds
 ?do i c@ emit0 loop
;

: cr0 \ --
 $0D emit0 $0A emit0
;

High level interrupts
The following code is taken from the serial driver for an Analogue Devices
AduC7020 serial driver.
: >RxQ \ char queue --
\ *G Put character from UART into queue.
 dup (cqFull?) \ if queue full
 if 2drop exit endif \ discard character
 (>cqueue) \ queue character
;

: FIFO>RxQ \ base queue --
\ *G Given a UART base address and a character queue,
\ ** empty the UART FIFO into the queue.
 begin
 over ComSta0 + @ $01 and
 while
 over ComRx + @ $FF and over >RxQ
 repeat
 2drop
;

: ser-isr \ --
\ *G UART0 high level ISR.
 _INTCON IrQSta + @ SerialBit and if
 case _UART dup ComIId0 + @ 7 and
 0 of ComSta1 + @ drop endof \ MSR for UART
 2 of endof \ Tx interrupt
 4 of SerInpQ FIFO>RxQ endof \ read characters
 6 of ComSta0 + @ drop endof \ Line Status interrupt
 nip
 endcase
 endif
;
' ser-isr add-irq

: seremit \ char --
\ *G Transmit a character on UART.
 _UART
 begin
 dup ComSta0 + @ %00100000 and
 until
 ComTx + !
;

: serkey? \ -- t/f
\ *G Return true if the UART has a character available.
 SerInpQ cqnotempty?

Embedded Systems

103

;

: serkey \ -- char
\ Wait for a character on the UART and return it.
 SerInpQ cqueue>
;

: serTYPE \ c-addr len --
\ *G Type a string to the UART.
 bounds
 ?do i c@ seremit loop
;

: serCR \ --
\ *G Issue a CR/LF pair to the UART.
 $0D seremit $0A seremit
;

Interlocks
The MSP430 example illustrates how to avoid a common source of error when
programming code that runs in the main code and extracts information from data
stored by an interrupt handler. If you do not carefully control the interrupts, the
interrupt handler may modify data while the main code assumes that it is stable. The
MSP430 example is repeated below.
: key0 \ -- char ; wait for character from USART0
 begin
 di rx0-avail c@ 0=
 while
[tasking?] [if]
 ei pause \ schedule
[else]
 \ cpu to sleep, GIE set, in assembler
 [asm bis # _cpuoff gie + sr asm]
[then]
 repeat
 rx0-char c@ 0 rx0-avail c!
 ei
;
The following code is for the four words used to control interrupts. The words DI
and EI are simple global interrupt enables and disables. The words [I and I] define
a section in which interrupt status is preserved to and restored from the return stack.
Inside the section interrupts are disabled. These four words are present in all MPE
systems. Equivalents will exist in systems from other vendors. Because these words
are CPU and implementation dependent, they must be written in assembler. In some
systems, optimised versions may be available in the code generator.
code ei \ -- ; enable interrupts
\ *G Global enable interrupts.
 eint ret
end-code

code di \ -- ; disable interrupts
\ *G Global disable interrupts.
 dint ret
end-code

Embedded Systems

104

code [I \ R: -- x
\ *G Preserve status on return stack, disable interrupts.
\ ** The state is restored by I].
 pop r14
 push sr
 dint
 br r14
end-code

code I] \ R: x -- ; restore I status from r. stack
\ *G Restore status saved by [I from the return stack.
 pop r14
 pop sr
 br r14
end-code

Block I/O
Forth handles files on any given computer in much the same way as any other
language running on that computer. The words used to open and close files are
discussed elsewhere. However, Forth also has a system called `blocks'.

Although blocks are no longer often used by Forths hosted on modern operating
systems, blocks can be very useful on embedded systems for data logging, especially
in a 16 bit Forth. Blocks can be implemented in paged or linear memory, serial
EEPROM or data Flash, over a serial line or network to a host, or a physical disc.

Blocks are units of memory loaded from and saved to what is notionally mass
storage. The data size of a block is normally 1024 bytes (1K). The system can work
with only one block buffer, but two or more are better. Blocks are accessed by a
number 0..u.

Figure 4: Block buffers

Embedded Systems

105

The addresses A0 to An can be obtained by entering:

 0 block .
 1 block .
 etc.

These each return the address of the first byte in their respective buffers. Block
buffers act as a memory cache between the mass storage and the Forth system.
Different Forth systems use various strategies for allocating and reusing buffers. The
most common are round robin and least recently used (LRU).

If your data can be neatly partitioned into 1kb units, blocks can provide extremely
good performance. Blocks can be implemented in a filing system or can simply be
treated as raw sectors on a disc. Even above a filing system, blocks can give a
surprising performance improvement at the expense of a little management code.

BLOCK \ u -- a-addr
Load the uth block of 1K from mass storage into a buffer, and return the
address of the buffer.

BUFFER \ u -- a-addr
Reserve a data buffer, and return the address of the buffer. The contents of the
buffer are undefined. If you write this buffer back to mass storage, the
previous contents in storage will be lost.

The block data can now be used and modified. When the data has been modified, you
must mark the block as modified using UPDATE.

UPDATE \ --
Mark the current buffer as modified. If the current buffer has to be reused for
another block, the contents will be written out before reuse.

The system knows that an update has occurred because an update flag is set.
UPDATE does not actually save the block to disc, but tells the system that it ought to
be written next time the buffer is reallocated, i.e. next time a block is written to that
buffer.

In most systems, only one buffer will be written to disc each time and so a disc or file
will never be closed neatly. However, there are three words to do the job nicely.

FLUSH --
This will save any UPDATEd buffers to disc and unassign all the buffers. This
means that the next time a block is loaded into a buffer, the computer takes the
buffer as being empty. Flush is made up of the words SAVE-BUFFERS and
EMPTY-BUFFERS.

SAVE-BUFFERS --
This will write to any disc any buffers marked as UPDATEd, but will not
unassign them. If the block is accessed again it will not be loaded into
memory, because the computer will still think the block is there and in fact it
will be.

EMPTY-BUFFERS --
This word actually unassigned the buffers, and after this word has been
executed, any reference to a block will cause the block to be loaded into
memory first.

Embedded Systems

106

Source in blocks
Before GUI operating systems and cheap PCs, many Forth systems kept source code
in blocks. The source code was displayed on-screen as 16 rows of 64 column lines,
matching the 1024 byte storage.

Figure 5: Source in blocks

The use of blocks for source code is rare in modern systems except for embedded
systems which require local configuration and editing without the presence of a PC.
By changing the default block size, some ingenuity with keys, and familiarity with
mobile phone text messaging, it is perfectly possible to edit source code using a
hexadecimal keypad and a 4 by 16 character LCD display. Desperate problems lead
to desperate solutions.

Umbilical Systems
A conventional Forth system includes its own text compiler and interpreter. In
smaller embedded systems, there is not enough Flash or RAM for this, or cheaper
chips can be used if less Flash and RAM is required. In addition, a PC can compile
much faster than an 8051. To avoid losing the interactivity that makes Forth so
attractive, the standalone compiler/interpreter on the target is replaced by a message
passer which executes commands (words) as instructed by the host PC.

Now all the interaction is provided by the cross-compiler running on the PC. The
cross compiler can take advantage of its own code generator and integrated
assembler and disassembler. This arrangement is called an umbilical or tethered
system. In practice, the only disadvantage of these is that debugging and maintenance
operations require exactly the same source code as generated the code in the target.
This is as it is during development, but may cause problems for maintenance.
Another disadvantage is that the Forth interpreter/compiler cannot be used for
production test and configuration.

Using an Umbilical Forth, it is quite possible to run two or more tasks on an 8051
single chip device using only the 256 bytes of internal RAM.

Embedded Systems

107

Target source code

Cross compiler & Symbol table

Target emulator

Message passing system (host)

Message passing system (target)

Target executable code

Figure 6: Umbilical Forth model

Probably the smallest CPU we have used this technique on was a 4-bit CPU from the
Hitachi HMCS400 range.

The link between the host and target is often called the XTL for cross target link. It is
normally a serial line. Some cross compilers can be extended by the user with new
drivers. We have used other links such as I2C, SPI, BDM and a JTAG interface.

109

16 Forth Internals

Anatomy of a Forth system
A Forth system consists of the following:

• Dictionary in which to store the definitions of words

• Parameter stack to pass information to and from words

• Return stack to hold return addresses

• Input and output buffers

• User variables

A minimum system will occupy around 8K bytes (4K cells). The maximum
addressable memory size on a 16 bit Forth system is 64kb and on a 32 bit Forth is
4Gb. A typical memory map on a conventional CPU is shown below:

Figure 7: Typical Forth memory model

Forth Internals

110

The picture below indicates a conventional layout of a Forth word.

Figure 8: Dictionary entry

The word described is:
: 2^2 \ n –- n*n
 dup *
;
There is great variety in dictionary implementation schemes. In general, the link and
name fields (the dictionary header) are together, and the code name and parameter
fields (the code body) follow. However, some systems keep the headers in a separate
database, and in systems such as Umbilical Forths (see the embedded systems
chapter) the header and the code body may even be on separate CPUs.

Link field: X and Y in the figure above. Forth word names are chained in a linked
list structure, anchored in a wordlist. The linking schemes range from single linked
lists on embedded systems to fully hashed schemes under operating systems.

Name field: Includes the text of the word’s name, and some other information
controlling visibility of the word.

Code name field: A, B and C in the figure above. The field contains compiler-
specific information generated by the compiler. In threaded code systems, this will
contain a pointer or code. In modern systems, the field may not present at all for
colon definitions, but will be present for children of CREATE.

Parameter field: Words built by CREATE contain data. The parameter field address,
sometimes known as the PFA, is the start address of this data area. Colon definitions
do not have parameter fields and this region usually just contains compiled code.

Forth Internals

111

Navigating the dictionary structure
Because of the variety of implementation techniques, and because the ANS Forth
standard carefully avoids implying any underlying implementation techniques,
dictionary navigation is not standardised. However, many systems provide a range of
words for stepping from one field to another for use within their own tools. You will
have to read the manual for the Forth you use to find out what is available.
Commonly available words are shown here. They mostly assume that the xt of the
word is the starting point since this is the address returned by FIND and SEARCH-
WORDLIST.

>BODY xt -- pfa
Step from the xt to the PFA. In ANS systems this operation is only specified
for children of CREATE.

BODY> pfa -- xt
Step from the PFA to the xt.

>NAME xt -- name
Step from the xt to the name field.

NAME> name -- xt
Step from the name field to the xt.

Structure of compiled code
This section deals with compiling code on conventional CPUs. Dedicated two-stack
machines are covered in the next section. The code examples are for colon
definitions on the Intel IA32 instruction set used from the 80386 upwards. This was
chosen for its wide familiarity, not for any endorsement of the architecture. The
choice of compiled code structure depends on the required trade off between code
size, performance and complexity. The implementations are described in the order of
fastest first.

Forth reg. Function

IP Instruction/Interpretation Pointer

RSP Return Stack Pointer

PSP Data(Parameter) Stack Pointer

Native Code Compilation (NCC)
This is the term usually given to systems that generate optimised machine code. The
code quality of the best of these is as good as that produced by compilers for other
languages such as C/C++. NCC systems have much in common with the STC
systems below. Tests show that code size need be no greater than for DTC systems
below, although the complexity of the code generator is very much higher. NCC is
currently (2005) the implementation of choice for most 16 and 32 bit CPUs.

Forth reg. CPU reg.

IP EIP (PC)

Forth Internals

112

RSP ESP

PSP EBP

Calling a word:
CALL address
Entry/exit code:
… RET

Subroutine Threaded Code (STC)
These systems use the CPU call and return system. They are typically over twice as
fast as the DTC systems below. Some versions generate short code sequences for
simple words to avoid call/return overhead, but do not do enough to be classified as
NCC systems.

Forth reg. CPU reg.

IP PC

RSP ESP

PSP EBP

Calling a word:
CALL address
Entry/exit code:
RET
Note that on RISC CPUs such as ARM and MIPS, the return address may be placed
by the BL instruction in a register and then a further save of the return address may
be required in the entry code.

Direct Threaded Code (DTC)
A short machine code sequence is followed by data or a list of word addresses for
colon definitions. The word addresses point to the machine code sequence for the
word. Coded words end by jumping to or inlining the next sequence below.

Forth reg. CPU reg.

IP ESI

RSP EBP

PSP ESP

Calling a word:
address
Entry/exit code:
JMP docolon … exit

Forth Internals

113

docolon:
 SUB EBP, 4
 MOV 0 [EBP], ESI
next:
 MOV EAX, 0 [ESI]
 ADD ESI, 4
 JMP EAX

exit:
 MOV ESI, 0 [EBP]
 ADD EBP, 4
 JMP next

Indirect Threaded Code (ITC)
The start of a colon definition contains the address of the docolon code routine. It is
followed by a list of addresses finishing with the address of the exit routine, which is
coded.

Forth reg. CPU reg.

IP ESI

W EBX – Work register used by some system code

RSP EBP

PSP ESP

Calling a word:
address
Entry/exit code:
docolon … exit

docolon:
 DD cocoloncode
docoloncode
 SUB EBP, 4
 MOV 0 [EBP], ESI
next:
 MOV EBX, 0 [ESI]
 ADD ESI, 4
 MOV EAX, 0 [EBX]
 JMP EAX

exit:
 MOV ESI, 0 [EBP]
 ADD EBP, 4
 JMP next

Token Threaded Code (TTC)
Token threaded code is used when code density is the overriding requirement. TTC
systems use token numbers to represent Forth words by small integers. Often the
most common words are coded as 8 bit tokens, and 16 bit tokens are used for other
words. Token Threaded Code has been used on payment terminals to provide binary

Forth Internals

114

code portability of banking applications across terminals from many different
suppliers. It has also been used to reduce the code size of games in a mobile phone.

Because of the wide variety of implementation techniques on the same CPU (some
TTC systems are written in C), no sample implementation is given. TTC is far and
away the slowest technique shown, but for applications which spend the majority of
their time in core words or operating system calls, application performance may be
considerably better than expected.

Other forms
Other forms that have been seen include segment threaded code for 80x86 real-mode
applications. The ingenuity of implementers in exploring the speed/size trade-off is
impressive.

The Open Firmware system used by Sun Microsystems, IBM and Apple to initialise
hardware and boot the operating system uses tokenised Forth source code which is
compiled at power-up.

Forth engines and stack machines
Commercially, microprocessors designed for a specific programming language have
not been successful. CPUs designed for efficient execution of Pascal, LISP, C, Forth
and Occam have all been produced as single chip microprocessors. Ultimately, none
have been a success in the long term. The exception in this list may be the
Transputer, which was originally designed to support both Occam and parallel
processing. Once an efficient C compiler for the Transputer was available, it became
a mild commercial success.

Stack machines have returned to current compiler and silicon design through
execution of the Java Virtual Machine (JVM). Add to this the realisation that the
fashions in current language selection are shorter than the commercial lifetimes of
CPU architectures. The current focus in stack machine design includes careful design
to support efficient execution of languages other than Forth.

Although hardware support for preserving return addresses on a stack has been
common since the 1960s, support for two or more stacks has been less common.
When using a data stack transient data is ordered on the stack rather than in a register
file, so one feature that distinguishes CPUs designed to support two stacks is a very
limited number of registers that have to be saved when performing a context switch.
Thus interrupt response is very good. Such CPUs are usually designed to be
deterministic, i.e. the time taken for execution of an instruction sequence is
completely predictable and stable. The RTX2000 running at 10 MHz instruction rate
has a 400ns interrupt response time before useful work can be performed. One of our
clients used it for video data acquisition using a 1 MHz interrupt rate. Another used it
as a timing generator for medical imaging systems.

It is interesting to note that despite the enourmous improvement in straight-line
performance of CPUs over the last 10-15 years, there has been very little if any
improvement in interrupt response times. This is discussed in more detail in a
following section.

Deterministic execution rules out caching and pipelining beyond the fetch/execute
level. Because of the low number of internal registers and the use of zero operand
instructions reducing instruction decode complexity, stack machines tend to be very
simple (low gate count, silicon area) by comparison with current RISC and CISC
architectures. In turn this makes them fast for the given process technology. Their

Forth Internals

115

application domain has been mostly in the area of hard real-time (“late answers are
wrong answers”).

First published in 1989, “Stack Computers: the new wave” by Philip J. Koopman, Jr.
is still the definitive work for an introduction to stack machines. The book may be
downloaded from http://www.ece.cmu.edu/~koopman/stack_computers/index.html

Commercial devices
Commercially available chips based on a Forth execution model included the Novix
NC4000, the Harris/Intersil RTX2000/01/10 series, the IX1 from Delta-t and the
Silicon Composers SC32.

 http://www.inscenes.com/siliconcomposers.shtml?siliconcomposers

Several others have been prototyped without achieving commodity silicon status. Of
the named CPUs above, the RTX2000 family became a workhorse for space and
satellite applications as it was available in a radiation-hardened process. It survives
as the RTXcore VHDL implementation from MicroProcessor Engineering. Both
Forth and C compilers are available. The IX1 sold in considerable volume into a
niche market as a fieldbus processor, capable of supporting most serial protocols at
up to 1 Mbps.

A group of devices including the Patriot Semiconductor PTSC1000 and the Lightfoot
family have been produced. These are essentially two-stack machines enhanced for C
and direct support of Java bytecode execution. At present their level of commercial
success is unknown.

With the explosion in the capability of FPGAs (Field Programmable Gate Arrays),
the current crop of available stack machines are mostly focussed on implementation
in FPGAs from VHDL or Verilog sources. Apart from the RTXcore from MPE, an
interesting machine is the MicroCore (see http://www.microcore.org) which has a
particularly interesting exception handling mechanism in hardware. With the
enourmous costs of one turn of a System-on-Chip design to silicon, the FPGA
approach to CPU design is the most likely to produce commercial success.

A Google search for stack machines will reveal the current state of the art.

Prototype and research machines
Chuck Moore and his associates have produced a range of devices which have
achieved limited production. His approach has been to produce an integrated tool
chain from silicon modelling to tiling. The results show that this approach can a give
a performance gain of over ten times compared to layout through an industry
standard tool chain. The downside of this approach has been that each silicon process
change requires considerable work on the tool chain, so reducing the rate at which
new processes can be adopted. While (Gordon) Moore’s law holds, it is unlikely that
this approach will lead to commodity silicon, but it can produce stunning
performance at very low cost for high-volume niche products.

Several EuroForth papers, especially from Bernd Paysan, describe the use of small
stack machines inside embedded products. In these designs the stack machine is
tuned in terms of instruction set, performance and silicon area for each application.

Chris Bailey (now at York University, UK) has explored the possibilities of
superscalar execution in stack machines with some success. His research suggests
that stack machines are suitable for superscalar execution and shows how it can be

http://www.ece.cmu.edu/~koopman/stack_computers/index.html
http://www.inscenes.com/siliconcomposers.shtml?siliconcomposers
http://www.microcore.org

Forth Internals

116

done. In the long term this opens the door to the use of stack machines in high
performance environments outside the traditional hard real-time domains.

Notes on embedded real-time
These notes are taken from a paper by Chris Bailey and Stephen Pelc at the
EuroForth 2004 conference.

There are four main areas in which embedded systems differ from desktop
computing.

1) Importance of interrupt response time

2) Importance of deterministic response time

3) Economics of code size

4) Importance of branch behaviour

In the case of stack machines, all comparisons are against an RTX2000 CPU at
10MHz (circa 1988). The state of the art for an embedded system is taken from a
60MHz Philips LPC2106 ARM-based microcontroller without caches but with a
memory accelerator (2003/4).

Interrupt response time

We define this as the time taken for the CPU hardware and software to save context
before starting useful work. To this must be added the context restore time after
performing useful work. The code below shows the figures for a 10MHz RTX
against a 60MHz ARM7TDMIS.

Entry
RTX2000 400ns 0 bytes 0 instructions
ARM 432ns 20 bytes 5 ins, 27 cycles @
16ns

Exit
RTX20000 200ns 2 bytes 1 instruction
ARM 400ns 16 bytes 4 ins, 25 cycles

Note that these figures exclude any overheads for compiler-generated code.

The figures show that despite a 6:1 to 40:1 clock rate increase in 15 years, where
typical top-end embedded CPUs run at 200-800MHz, interrupt response times have
not improved. The ARM is among the better performers in embedded RISC CPUs.
As shown by Koopman and others, interrupt response (entry) times in current CISC
CPUs can exceed 400 clock cycles. When caches and MMUs are involved, the
situation becomes even worse.

PROC IRQ_entry \ -- \ 4 cycles
\ --- save state ---
 stmfd rsp ! { r0-r12, link } \ 3 + 14 mems
 mrs r3, SPSR \ 1
 stmfd rsp ! { r3 } \ 2 + 1 mem
\ --- call high level handler ---
l: IRQ_call
 bl <action> \ 3
\ --- restore state ---

Forth Internals

117

 ldmfd rsp ! { r3 } \ 3 + 1 mem
 msr SPSR, _c _f r3 \ 1
 ldmfd rsp ! { r0-r12, link } \ 3 + 14 mems
 sub .s pc, link, # 4 \ 3
end-code

Determinism

Many embedded applications sample regular signals (heartbeat, 50/60Hz mains,
audio etc.). It is imperative that sampling periods are at fixed intervals to reduce
phase jitter in the sampling. Modern CPUs achieve high clock speed using caches
and long pipelines. Both of these have adverse impact on determinism. See Koopman
et al for the numbers.

It should be noted that a heavy interrupt load affects both entry and exit performance.
In the worst case, the whole of the interrupt routine must be loaded from main
(slowest) memory and displaces the background task which in turn must be reloaded
from main (slowest) memory.

Economics of code size

Silicon costs go up as the fourth power of dimension (yield, chips/wafer etc) and
power consumption goes up with the number of active transistors per clock within
the same geometry. In the single chip microcontroller area, code size affects memory
in terms of on/off chip Flash, and also in terms of RAM usage. Many die photos
demonstrate that the silicon area of on-chip memory exceeds that of the CPU and
peripherals.

Importance of branch behaviour

Typical microcontroller code shows that branches and flow of control occur roughly
every 5 instructions (approximately 20% of the code). A Pentium 4 with a 20 stage
pipeline, and misses in all caches and branch prediction buffers can suffer a 30 cycle
penalty for a missed branch (20 cycles in the pipeline, 10 in the memory). The ARM
above has a 4 cycle worst case (1 for decode, 3 for memory), whereas the RTX has a
fixed 2 cycle overhead in all cases.

The Pentium 4 figures given above are probably best case. The actual timings depend
heavily on the chip-set and memory system. One correspondent reports that he has
measured a delay of 385 cycles on a Pentium 4.

119

17 Using the Forth interpreter

Forth is an interactive extensible language. You can use the interpreter at compilation
time and during program execution as well as for program testing. You can also use
the compiler at run time. Careful use of the interpreter, compiler and Forth system
can give big dividends in terms of code size and timescales.

The first example shows how configuration code can be used to set defaults at
compile time, and to provide configuration tools for the application.

The second example uses the compiler to provide storage of named items, and
explores a number of issues raised by this.

Configuration example

Application and design
The application is from a serial device driver used in an embedded PC running DOS
and VFX Forth for DOS. Not all the code is provided here, so you’ll have to use this
code as an illustration from a real-world example – it is not complete in itself. The
point is to illustrate how the Forth interpreter can be used both at compile time and at
run time.

To configure a serial port, not only do you need to specify the baud rate, parity and
so on at run time, but you also need to be able to specify the I/O port address,
interrupt number and so on. The hardware configuration for the first three serial ports
is (mostly) standard and can be done at compile time. Industrial applications can
require a very large number of serial ports and since their configurations may change
(it is difficult to buy the same PC motherboard for more than two or three years in
succession), the configuration may have to be done during installation and
commissioning of the equipment. This configuration information can be held in a file
which is INCLUDEd at program start. It uses the Forth interpreter to set up the
system.

The Forth system accesses I/O devices through a “Generic I/O structure”. This is a
data structure whose first part is common to all devices, and the following parts are
data private to each device. For each serial device, a configuration string is used to
the data into the data structure. The strings are similar to those used by the DOS
MODE command, e.g.
 COM2: 38400 baud N,8,1 8 kb 4 kb buffers
specifies that the device uses the hardware for COM2, runs at 38400 baud, no parity,
eight data bits, one stop bit and has input and output buffers of 8 and 4 kilobytes
respectively.

Interpretation of the string starts with the address of a structure on the data stack.
Each word that processes part of the configuration, such as BAUD and N,8,1,
consumes relevant data and leaves the structure address on the stack ready for the
next word.

Implementation
The code is taken directly from one of the VFX Forth for DOS source files. The
comment lines that start ‘\ *x’ are processed by documentation tools to produce
HTML and PDF documentation directly from the source code.

Using the Forth interpreter

120

struct /ComData \ -- n ; size of uart/queue structure
\ *G The /ComData structure holds the data needed to process
\ ** a channel, including the UART address, queue addresses,
\ ** and transmit flags. This is a Generic I/O structure.
\ GENIO data
 int C.handle \ device handle or -1
 int C.vectors \ pointer to Gen I/O vectors
\ UART configuation
 int C.mode \ mode flags, b0=16450, b1=16550,
 int C.baud \ baud rate
 byte C.int# \ DOS interrupt#
 byte C.#data \ #data bits, 5, 7, 8
 byte C.parity \ parity
 byte C.#stop \ stop bits
\ buffer configuation
 int C.port \ UART port base address
 int C./inpQ \ size of input queue
 int C.inpQ \ input queue (allocated from heap)
 int C./outQ \ size of output queue
 int C.outQ \ output queue
 int C.flag \ true if TX in progress
\ PIC configuation
 int C.pic0 \ first PIC port (must be set)
 int C.pic1 \ second PIC port (0=unused)
 byte C.irqPic0 \ PIC0 IRQ#
 byte C.enPic0 \ PIC0 channel enable mask
 byte C.disPic0 \ PIC0 channel disable mask
 byte C.irqPic1 \ PIC1 IRQ#
 byte C.enPic1 \ PIC1 channel enable mask
 byte C.disPic1 \ PIC1 channel disable mask
 aligned
\ Interrupt counters and state
 int C.#ints \ number of times interrupts checked
 int C.#MSRints \ number of MSR interrupts
 int C.#RXints \ number of receive interrupts
 int C.#TXints \ number of transmit interrupts
 int C.#LSRints \ number of LSR interrupts
 byte C.lastMSR \ last value from MSR
 byte C.lastLSR \ last value from LSR
 aligned
\ Saved UART configuation
 /UARTstate field C.US \ UART state save area (all bytes)
 aligned
end-struct

\ ************************
\ *S Configuring serial ports
\ ************************
\ *P Serial ports are initalised and opened using command
\ ** strings similar to those used in DOS commands. The
\ ** commands are Forth words in a private vocabulary.

vocabulary COMsettings \ --
\ *G Used for serial port set up commands. All words in this
\ ** vocabulary must return the /Comdata structure passed
\ ** to them, e.g.
\ *C 115200 baud (struct n -- struct)

Using the Forth interpreter

121

\ ********************************
\ *N Words used in command strings
\ ********************************
\ *P The /ComData structures are initialised using command
\ ** strings held in a private vocabulary. The same strings
\ ** are used when opening the device.
\ *C COM2: 38400 baud N,8,1 8 kb 4 kb buffers

also COMsettings definitions

: baud \ struct baudrate -- struct
\ *G Set the structure's baudrate.
\ ** The default is 9600.
 over C.baud ! ;

: port \ struct port -- struct
\ *G Set the structure's I/O port base address.
\ ** No default unless SET by COM1..COM4 below.
 over C.port ! ;

: int# \ struct int# -- struct
\ *G Set the structure's DOS interrupt number.
\ ** No default unless SET by COM1..COM4 below.
 over C.int# c! ;

\ LCR - Line control register

: #data \ struct #bits -- struct
\ *G Set the structure's number of data bits. Defaults to 5.
 5 - %00000011 and \ LCR bits 1:0
 over C.#data c! ;

: #stop \ struct #stop -- struct
\ *G Set the structure's number of stop bits. Must be 1 or 2.
\ ** The default is 1.
 1- 0<> $04 and over C.#stop c! ; \ LCR bit 2

$00 constant no \ LCR bits 5:3
$08 constant odd
$18 constant even
$28 constant par1
$38 constant par0

: parity \ struct #bits -- struct
\ *G Set the structure's parity usage. #bits must be one of
\ ** NO, ODD, EVEN, PAR1 or PAR0. The default is NO.
 over C.parity c!
;

: buffers \ struct #in #out -- struct
\ *G Set the input and output queue buffer sizes, which
\ ** must be a power of 2. If unused, defaults to 1024
\ ** and 256.
 rot tuck C./outQ ! tuck C./inpQ !
;

: PIC0 \ struct bit# port -- struct

Using the Forth interpreter

122

\ *G Set the bit# and base address of the PIC that will be
\ ** used first to clear/enable/disable an interrupt.
\ ** Defaults to the COM1 standard settings or as set
\ ** by COM1..4.
 ...
;

: PIC1 \ struct bit# port -- struct
\ *G Set the bit# and base address of the PIC that will be
\ ** used second to clear/enable/disable an interrupt.
\ ** Use 0 0 PIC1 if the second PIC is unused.
\ ** Defaults to the COM1 standard settings or as set
\ ** by COM1..4.
 ...
;

: COM1: \ struct -- struct
\ *G Set the default conditions for COM1:
 $03F8 port $0C int# 4 $20 PIC0 0 0 PIC1
;

: COM2: \ struct -- struct
\ *G Set the default conditions for COM2:
 $02F8 port $0B int# 3 $20 PIC0 0 0 PIC1
;

: COM3: \ struct -- struct
\ *G Set the default conditions for COM3:
 $03E8 port $0C int# 4 $20 PIC0 0 0 PIC1
;

: COM4: \ struct -- struct
\ *G Set the default conditions for COM4:
 $02E8 port $0B int# 3 $20 PIC0 0 0 PIC1
;

: N,8,1 \ struct -- struct
\ *G Set the structure to no parity, 8 data bits, 1 stop bit.
 no parity 8 #data 1 #stop
;

previous definitions

\ ***************************
\ *N Handling command strings
\ ***************************

also COMsettings
: ([COM) \ struct -- struct
 -1 over C.handle ! \ mark as closed
 COM1: #9600 baud N,8,1 \ default initialisation
 /ComRxQ /ComTxQ buffers
;
previous

: [COM \ struct -- struct
\ *G Starts a definition of a /ComData structure.
\ ** [COM may be followed by any of the words above up to

Using the Forth interpreter

123

\ ** the closing COM]. Unless overriden, sets
\ ** COM1:9600,N,8,1. Use as indicated
\ ** in the example below:
\ *C struct [COM COM2: 38400 baud N,8,1 COM]
 state @
 if postpone ([COM) else ([COM) endif
 also COMsettings
; immediate

: COM] \ struct --
\ *G Closes the definition started by *\fo{[COM} above.
 state @
 if postpone drop else drop endif
 previous
; immediate

SysErrDef err-COMstring "Error in COM command/open string"

: (SetComData) \ caddr len struct --
 depth >r
 [COM -rot evaluate COM]
 depth r> swap - 3 <> err-COMstring ?throw
;

: SetComData \ caddr len struct --
\ *G The string caddr/len is processed by EVALUATE as
\ ** between [COM string COM]. Any error causes a THROW.
\ ** Zero length strings are ignored so that previously
\ ** set data is used.
 over if
 ['] (SetComData) catch err-COMstring ?throw
 else
 drop 2drop
 endif
;

A serial port device is created by the word SerDev: which can then be set up using
the same command strings.
SerDev: COM1dev \ -- sid
\ *G Standard PC COM1 port device set by default to:
\ *C COM1: #115200 baud
 COM1dev [COM COM1: #115200 baud COM]

SerDev: COM2dev \ -- sid
\ *G Standard PC COM2 port device set by default to:
\ *C COM2: #38400 baud
 COM2dev [COM COM2: #38400 baud COM]

Phone book revisited
The phone book example comes from an MPE course that has been run for many
years. While giving the course at a customer site, I realised that the implementation
shown in a previous chapter takes no advantage of Forth itself. I then rewrote the
exercise to take full advantage of Forth itself.

Using the Forth interpreter

124

The original implementation in the course file requires about 270 lines of source
code. The implementation presented here takes about 80 lines but takes some
liberties with the intent of the specification. It uses Forth’s dictionary structure and
extensibility as part of the application.

Design
An entry in the phone book is a combination of a string and an extension number.
From the specification, the string is a single name. The association of the two is
performed by defining a constant, e.g.

10 constant benedict

To avoid conflicts with words of the same name in the underlying Forth system, we
keep the names in a separate wordlist (nameless vocabulary) as CONSTANTs. By
creating and searching for names in this wordlist we can use the Forth interpreter
itself to create the entries and the standard dictionary search tools to find the names.
Once we have found the name we can EXECUTE the constant to return its value.

Because ANS Forth does not specify either the implementation structure of the
dictionary or the tools required to walk a wordlist, I have chosen to make an
assumption (see the words CALLS and CALLS? below) about the dictionary and data
layout of the underlying Forth system. This technique will not work on Umbilical
systems. If you find other Forth systems for which the assumption fails, please let me
know. The assumption is required to find a name from a number. I assume that the
data value defined for a CONSTANT is at the very end of the word’s data structure
and that if I “comma” more data into the dictionary the new data follows on
immediately. I also assume the existence of the word BODY> (pfa -- xt)
which exists on most hosted systems.

Implementation

only forth definitions decimal

wordlist constant widPhone \ -- wid
\ *G Make the wordlist for the PhoneBook.

0 value LastEntry \ -- addr
\ *G Holds linked list of entries.

: FindName \ "<name>" -- xt nz | 0
\ *G Return the xt and non-zero of the name that follows.
\ ** If the name cannot be found just return zero.
 bl word count widPhone search-wordlist
;

: CheckNumber \ n --
\ *G Error if n is outside the range 0..9999
 0 9999 within? 0=
 abort" Telephone number outside range 0..9999"
;

: CheckName \ caddr len --
\ *G Apply checks to a name
 dup 15 > abort" Name too long"
 2drop
;

Using the Forth interpreter

125

: Calls \ n "<name>" --
\ *G Make a new entry in the phone book in the form:
\ *C <nnn> Calls <name>
 dup CheckNumber
 >in @ bl word count CheckName >in ! \ abort if exists
 get-current >r widPhone set-current \ private wordlist
 constant \ make entry
 here LastEntry , to LastEntry \ link in chain
 r> set-current \ restore
;

: Calls? \ n --
\ *G Report who is called by number n.
 LastEntry
 begin \ -- n addr
 dup
 while \ -- n addr
 2dup cell - @ = if \ check value of constant
 body> >name .name
 drop exit
 endif
 @
 repeat
 2drop ." Nobody"
;

: Phone \ "<name>" --
\ *G Display the number of the name that follows.
 FindName if \ -- xt |
 execute cr . \ execute to return value
 else
 cr ." has no phone"
 then
;

: Entries? \ --
\ *G Display the phonebook names and numbers.
 LastEntry
 begin
 dup \ address of link
 while
 cr dup body> >name .name
 17 >pos ." -- " dup cell - @ .
 @
 repeat
 drop
;

Deviations, issues and lessons
This implementation deviates from the original specification in a number of ways:

• the number of entries is not defined,

• the display format is slightly different,

• changed extension numbers are not removed.

Using the Forth interpreter

126

In effect, the implementation is a quick and dirty hack to get something running.
However, it raises several issues about the specification:

• Why are names restricted in size?

• How should the phone book be saved?

• Can two people have the same name?

• Do people share extensions?

In my career it has been very rare to receive a complete or good specification. In
practice specifications evolve by refinement – the “spiral lifecycle” rather than the
“waterfall” model. However, an implementation architecture that makes a false
assumption about the long-term evolution of the system will eventually fail and have
to be discarded. Fixing architectural faults is often more expensive than starting
again.

When you are faced with a new specification, you have to question it. There are often
assumptions made by the authors about software that are invalid. Similarly, as a
software engineer, you are likely to make assumptions about the application that are
also invalid. The fine (and often critical) details about the process being automated
are all too often unstated in the specification.

Another crucial part of the initial stages is to simplify as much as possible. Separate
the main objectives from the “wouldn’t it be nice ifs” (WIBNIs). In the later stages of
a project WIBNIs often introduce complexity, consume more time than the original
objectives, and delay product launch. Although the marketing department and
salesmen are key friends early on, their enthusiasm can generate unexpected
problems later on. In most projects, and especially embedded ones, the software
people are the last in the chain, and thus are most visible for late delivery, even if late
delivery of out-of-specification mechanical systems is the cause of your grief. On
one project I worked on, the mechanics were taken away for overnight painting and
were delivered back four days later, leaving less than eight hours for software testing
before the system was delivered for trials.

Analysis of large software projects shows that frequent deliveries of software
modules that can be tested contributes enourmously to project success rate. If the
architecture is right, additional features can be added later. Giving the end-user
something to try contributes to the sense of progress and reveals any design problems
early. Fixing something costs as at least three times as much as getting it right first
time.

One of the key benefits of Forth is that the interactivity allows for very rapid
investigation of faults. You can use the interactivity not only for debugging but also
to demonstrate possibilities to people in other disciplines. In order to do this
successfully you have to have an initial chassis to work from. So deliver something
early and use it to test not only software, but also the specifications and assumptions
you are working from – not only other peoples’ assumptions, but also your own.

127

18 Code Layout

Code layout is a vexed topic in any programming language. Many programmers,
especially “guru” class programmers, have a style of their own and are reluctant to
change it. However, from my own observation of large projects, the use of a “house
style” for source code produces significant benefits over the lifetime of a product.
The larger the team, the more important this becomes.

This does not mean to say that a house coding style should not evolve. My own
programming style has changed as I have learnt, and in some cases it changes it
according to the application domain and who is going to read the code.

The key features for a source coding standard are

• Consistency from one programmer

• Consistency between many programmers

• The standard is easy to follow and understand

• The resulting code is easy to follow and understand

• Code which is difficult to get wrong because of layout

• A layout which is also visually pleasant

A secondary (and increasingly important) benefit is that a consistent style makes it
much easier to use automated source maintenance and documentation tools. This
may not appear worth much for a quick and dirty project, but it is invaluable for large
projects. There are current Forth projects approaching 1,000,000 lines of Forth
source code.

A description of the requirement of the standard will be followed by an example. In
the example, the relevant code fragments will be printed in UPPER CASE. The
comments in the example will be in lower case. However, the case of the characters
used in real code is not specified. Some compilers may be case-sensitive, others not.
Also different programmers may have case preferences. The code examples in this
document will assume that the left-hand end of the line comes directly below the left-
hand end of this type of text. Indented code will be relative to this column position:

\ the beginning of the line
 \ indented by one space

Why a standard?
There are several reasons for producing and following a standard for anything. This
standard is produced for the following reasons.

In any organisation, if many programmers are all using the same language, they will
inevitably be sharing source code, or working in teams on a given project. If every
programmer writes code to his own or no standard, then communication will be
difficult, and programmers will tend to prefer to re-invent the wheel rather than try to
understand and use another person’s code. This is both costly and time-consuming.
By following a standard - any standard - each programmer’s code will be meaningful
to the others.

Code Layout

128

When a programmer starts to learn a language, he or she will not know how best to
either write or lay out the code being written. Tutorials abound to teach the syntax,
structure and word-set of Forth, but there is little advice given on layout and practice.
This document seeks to offer the collected experience of staff at MPE so that other
programmers learn an accepted and clear standard.

However, the standard as presented here should not be taken as a diktat. If an
organisation has its own specific layout or documentation requirements, these should
not be ignored. A standard is there to help, not hinder in the production of source
code.

Other Forth coding standards exist. A good place to start looking for them is at
http://www.forth.org.

Implications of editors
Programmers vary widely in their attitudes to editors. Some can (and will) use almost
any editor to hand. Others are lost without an (inevitably obscure and obsolete) editor
and a set of idiosyncratic macros. Over the years I have come to the conclusion that
trying to impose a particular editor will only spark a long and expensive religious
war. Editors are cheap compared to programmer salaries and PC costs.

The use of an editor has many implications. One of these is the amount of code
visible on the monitor at any one time. Another is the use of tabs and spaces in white
space. Another is syntax colouring, which has a real impact; I am always surprised
when I read my code in uncoloured form. Yet another is the decision of how the code
is fragmented - how many words in a section or in a file - and how many files in the
application or project.

The number of lines visible on the screen, coupled with the speed of cursor
movement almost dictates the size of any word or procedure produced. This is of
direct relevance to the style of code eventually written: whether the code is very
vertical with lots of white space, or is very horizontal with much code on every line.
This is discussed later.

The decision of how many words will be placed on one page or in one file depends
on the nature of the compiler and editor in use. If the editor can have many windows
onto many files, then many files may be used easily - with the code factored out on a
per-file basis. However, if the editor does not support multiple files, then there will
be a tendency to place all code in one file.

Tabs
The use of tabs to space out code and comments has a direct relevance to the amount
of white space between elements of the source file. If spaces must be used, there will
be little white space (as its production is tedious), but if tabs are used, there may be
quite a lot of space in the file, and it will be uniform, but will be at the whim of any
tool used with the file. A good example of this is the fact that DOS (and many
Windows command-line tools) tabs are preset to 8 columns (1,9,17, etc.) for
programs such as PRINT and TYPE, but editors generally have programmable tab-
stops.

It is therefore important to consider the tab spacing used in conjunction with the tools
likely to be used with the source files. If an editor is capable of smart indenting, the
amount of indent has to be considered. If the indent is set too deep, very few
structures will be easily nestable (sometimes an advantage), but if the indent is too
small, then the indent will not stand out as such.

http://www.forth.org

Code Layout

129

Our house rule is that if you edit with tabs set to anything other than every eight
characters, the editor must be set to insert spaces rather than hard coded tabs. This
lets us use some old but powerful command line tools while retaining flexibility in
the editor.

When you receive third party code, you will often find that it has hard tabs set to
some value other than the one you use. A quick Google search will find TAB.EXE or
a similar tool that will substitute spaces for tabs. Some will even replace spaces by
the appropriate tab settings.

Horizontal and Vertical layouts
There are two main styles of source-code layout in use. One is vertical, as used in
assembler source, and the other is horizontal, as used by most C programmers (and
others).

Vertical code:

 mov ax, bx
 add bx, 3inc di

Horizontal code:

 for (i=0; i++, i<=20) printf (%d, i);

The horizontal layout leads to a high code density and minimal eye movement to
read. The vertical layout encourages in-line comments and improved visibility due to
white space. Both have their benefits and disadvantages.

Forth programmers usually prefer in-line comments along the definition of a word.
This undoubtedly leads to more comprehensible code as it is both read and written,
but relies on a rather vertical code layout. However, the novice programmer is likely
to extend the vertical layout to the extreme of a typical assembler layout, and thus
lose the high-level structure and flow of Forth source.

This generally derives from the phrasing of code - writing meaningful phrases or
fragments of code on one line such that the comment describes the overall effect of
the line, not the actions of individual words such as @ and +. Phrasing also helps
point out code fragments which could be written more efficiently as separate words -
being factored out.

Making Forth code legible is a compromise between vertical and horizontal layouts -
with code well phrased or factored, but with structures spread out for easy checking
or modifying. As discussed in the section Control Structure Layout, however, even
these are open to debate, as short bodies within structures are often best on the same
line as the entire structure.

Comments
There have been two standards of Forth source code comments. One is the in-line
comment, the other is an additional block of comment before or after in the file, or in
another file.

The former has the advantage of being parallel to the code to which it relates whilst
the latter reads as consistent English, or other human language, and is more
descriptive. In a text file, both forms of comment may be supported. Because the
page is at least 80 characters wide, each line may include a good in-line comment.
Because the monitor screen is at least 25 lines deep, a definition may also have a
header block of comment above or below it. This comment could potentially be in

Code Layout

130

another file, perhaps a documentation file, but is far more relevant and useable if it is
in the same file, and in the same section as the code it explains.

Wisdom should be used in the wording in comments. The comment should not be so
trivial that it is pointless (fetch the contents of the variable), but should not be so
removed from the code that it conveys no information (reads data structure). It
should indicate clearly, assisting the Forth itself (get the pointer value):

: EXAMPLE \ -- ; comments example
 \ pointless ...
 DATA 4 + @ \ get the contents of the variable
 \ no information ...
 \ read data structure
 \ useful ...

\ get the second pointer value
 @ EXECUTE ;

Naturally the use of the phrase 4 + in this code is deprecated. The use of structures
or named offsets is much to be preferred.

File layout
Our files tend to consist of several sections. The first section is a header section,
which is followed by one or more sections of related code, followed finally by file
test code.

Some program editors permit you to enter page breaks as section breaks and display
them as horizontal lines. Some years ago this was popular but the practice has now
almost died out. Our experience was that printed copies (still useful) of source code
did not look good unless programmers rigidly maintained a maximum of (say) 66
lines per page. A few days of late night commissioning on site ruined it all. We
replaced the pages with sections delimited by particular commenting conventions,
e.g.

\ *******
\ Section
\ *******

\ ==========
\ SubSection
\ ==========

\ -------------
\ SubSubSection
\ -------------

Header Section
The first section of a file should include any copyright, author, or other specific
information. This may also include project details or other information relevant to the
use of the code. If there are specific hardware dependencies, these should be outlined
on the first page - this page is the one usually first seen when the file is browsed or
edited.

\ Code for Front panel control
\ Customer: xxxxxxxx
\ Project: yyyyyyyy
\ (c) MicroProcessor Engineering Ltd and xxxxxxxxx

Code Layout

131

\ 133 Hill Lane
\ Southampton SO15 5AF
\ UK
\ Phone +44 (0)23 8063 1441
\ Note: this code requires the zzzzzzzz
\ interface card, and MPE 8031 Cross-compiler
\ and interrupt handling code.

Do not forget to use full international addresses and telephone numbers. You’ll be
amazed where your code gets to after a few years.

Many Forth compilers have extended comment operators which ignore parentheses.
This allows header comments to be written without the use of a backslash comment
on every line. MPE and others use the form:

((can extend over many lines and include () chars))

If you do not have these, you can use the ANS conditional compilation form
for long comments:

0 [IF] ... [THEN]

The standard MPE header looks like this:

\ Filename – description

((
Copyright (c) 2005
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England

tel: +44 (0)23 8063 1441
fax: +44 (0)23 8033 9691
net: mpe@mpeltd.demon.co.uk
 tech-support@mpeltd.demon.co.uk
web: www.mpeltd.demon.co.uk

Short description of the function of the code in this
file.

To do
=====

Change history
==============
20050131 SFP002 Converted for Program Forth
20041205 RBM001 Removed potential insult
))

((
Put the design description here. Design information
is really important!
))

We provide a change history in the form of a date code that can be automatically
sorted, then a change code of three initials for the author and a three digit change
number, followed by a brief description of the change. Each changed line is marked
with the change code. Changes can be quickly monitored by searching for the
relevant change code.

mailto:mpe@mpeltd.demon.co.uk
mailto:tech-support@mpeltd.demon.co.uk
http://www.mpeltd.demon.co.uk

Code Layout

132

Where the design information is non-obvious, put an overall design in separate
comment block – it’s easier to find that way. Be kind to your fellow programmers,
they may not be as bright as you are and you do not want to be pestered by them long
afterwards. More importantly, putting down design information here clarifies the
mind and reduces the bug level in your code.

Code sections
The rest of the file, either the code after the project information, or the subsequent
sections, will contain the code for the project, or the portion of the project.

It is normal to split the code for an entire system into several files. These are
normally grouped into related areas: all the data structures in one file, all the serial i/o
in another, and so on. If the project is small enough not to warrant many source files,
then the code areas will be grouped on different sections. If the project is big, then
some parts of the code will inevitably start small, and then evolve into a monster.
Split these into easily identifiable sections.

\ *******
\ Section
\ *******

\ Design info

: foo \ a b – c
 ...
;

Since we started using automated tools to extract documentation from the source
code, we have noticed that we tend to stick to our house coding style much more
closely. Our clients and contractors have noticed this and say that the ability to
produce HTML and PDF documents quickly has impacted their coding style too.
Because design information can be extracted quickly and us up to date, it is read
more. Consequently there is more positive feedback that encourages programmers to
produce this documentation. Early documentation reduces bugs.

Test Section
Although much ignored, test code can be invaluable when the file has been broken.
When you have finished with initial test code, comment it out and/or move it to the
end of the relevant section or the end of the file. Do try to document it to some level,
otherwise your successors will throw your work away.

Base and numbers
If the number base for the code on a section is important, the base should be
specified at the top of the section. Our habit is always to revert to DECIMAL
afterwards.

Many recent Forth systems permit you to use a prefix character to indicate the
number base. The most common are:

$55AA hexadecimal
#1000 decimal
%1010 binary

If the compiler to be used supports this feature, then it is good practice to use it, as
there can then be no mistake which number is meant at any time. If the compiler does

Code Layout

133

not support the temporary base definition, then it is best to always prefix a hex
number with a zero:

HEX
0100 \ hex 100 = decimal 256
0ADD \ hex ADD = decimal 2781
ADD \ the word ADD
DECIMAL

Vocabularies and wordlists
If a vocabulary or context switch is to be made in the source code, the vocabulary
should be the same at the end of a section as at the beginning. This means that if a
new section is inserted afterwards, the search order and defining vocabulary will be
known:

\ ************
\ I/O handling
\ ************

ALSO IO
.........
PREVIOUS

Layout of a definition
It is acknowledged that a Forth definition should be as short as possible. This may be
2 or 3 lines, or it may be 15 or 20 lines. The actual size will depend on
circumstances, but should always be as short as possible. Forth minimalists say that
good Forth definitions contain no more than seven source tokens, which is very
difficult to achieve in practice, especially when coding for operating systems such as
Windows. This recommendation comes for several reasons.

• Short code fragments are easy to test and hence are reliable

• Short code fragments promote code reuse

• Short code is understandable

If you reuse code wherever possible, it can then be possible to make major
architectural changes to a software subsystem without introducing bugs all over the
rest of the system.

Header comments
One method for writing a lengthy descriptive comment for a Forth word is to use a
header block. This is a block of comments just above the start of the word, which
describes the function of the word in detail. This is normally detail or description
which would not fit well in the in-line comments down the right hand side of the
page:

\ this word ...
\ ...
\ ...

: word1 \ a b -- c ; does ...
 ... \ ...
;

Code Layout

134

Because of the way our documentation tools work, MPE puts these comments after
the definition line. What matters is to be consistent.

We tend to use header blocks before a group of words for design information that
covers the group.

Name and stack comment
The first line of a definition will consist of the start of the definition - either a colon :
or a CODE, or label, etc. and the name of the procedure. This will then be followed
by the stack effect for the word. In our standard, stack comments start at column 17
(second tab stop).

: WORD1 \ n1 -- n2 n3 ; description
 ... \ ...
;

: WORD2 (n1 -- n2 ; description)
 ... \ comment
;

CODE WORD3 \ n1 -- n2 n3 ; description
 ...
END-CODE

The :, etc. will start at the very left-hand end of the line. There will be one space
between this and the name of the word.

The stack comment and description will start some way across the line - but further
towards the left and the word name than the in-line comments. THERE WILL
ALWAYS BE A STACK COMMENT. It is a major sin if the stack comment is
incorrect. Within the stack effect, execution will be identified by one of the
recognised marks:

-- --- -->

The first of these is our standard. The description is recommended, as formal source-
scanning tools will look for this rather than the others. If it becomes necessary to also
document the return stack effect, use

 R: a -- bc

Some people use ++ in place of -- for return stack comments. However, many
people use F: to indicate the floating point stack, so R: is consistent with this. If
you need special additional stacks you can extend the notation, e.g. with S:, to
indicate these. If you need multiple stack effects separate them with “ ; “, e.g.

: >R \ x -- ; R: -- x ; copy one item to r.stack
 ...
;

It is good practice to follow the stack effect with a short description of the action of
the word - about three or four words:

: D* \ d1 d2 -- d3 ; double multiply

If there is a short description of the word, it should be separated from the stack effect
by a semicolon (;) or other obvious character. This will distinguish the description
from a stack effect consisting of descriptive names for the stack items. Using a

Code Layout

135

standard semicolon, other formal tools such as source analysers can correctly handle
the source code and the comments.

Indenting and phrasing
The body of the word - the words it calls, or the assembler mnemonics it uses will be
indented from the left-hand end of the line. This indent will be uniform throughout
the file, and will normally be two spaces in MPE code, but Forth Inc and others often
use three.

Each line of code in a definition should constitute a readable and meaningful phrase.
If you have more than one phrase on a line separate them by two spaces. Forth
should not be laid out so vertically that each line is individually meaningless. A
single phrase will consist of enough code to perform some appropriate part of the
application:

VAR @ 10 +
OVER 4 <
SWAP 3 + BILL +!

End of definition
At the end of the definition, the final word, the semicolon or END-CODE will not be
indented. This ensures that the end of the definition can be found easily. It also helps
when code is added to the end of a word, by avoiding the possibility of having
several semicolons at or near the end of the word.

: WORD1 \ n1 n2 -- n3 ; function to ...
 ...
 ...
;

CODE WORD2 \ n1 n2 -- n3 ; function to ...
 ...
 ...
END-CODE

If a word is to be made IMMEDIATE, the word to make it so should appear just after
the semicolon or END-CODE:

: WORD1 \ n1 n2 n3 ; function to ...
 ...
 ...
; IMMEDIATE

If the word were to be placed on the line following the end of the definition, though
legal, there would be a possibility of another word being inserted between the two,
and the first word then losing its immediate status. Similarly, an assignment of the
action of a DEFERred word to resolve a forward reference should appear on this line

Comments
Definitions should be commented as well as possible. In a text file there is no excuse
for not having enough room to write comments, and so comments should be used
liberally. In a definition, there should be comments down the right-hand side of the
page, in parallel with the code. These comments should start in a uniform column,
which should as far as possible be consistent throughout the file. This column should
be further to the right than the starting column for the stack comment and short
description, usually about half way across the page. We default to column 41.

Code Layout

136

: WORD1 \ n1 n2 -- n3 ; function to ...
 ... \ get the pointer
 ... \ modify the address
;

Line comments are best started with the \ word - comment to end of line. This is in
preference to the (word, which must be terminated with a). This last is easily
forgotten. These comments should not be on the stack-detail level, though this may
be appropriate in certain cases. They should, however, give descriptive information
on the state of the system at that point - describing the overall action of the line of
code, of the phrase. Needless to say, comments should also be correct.

On a point of style, it is better if the editor inserts tabs between the code and the
comment than a series of spaces. This leaves less tidying-up to do after small
changes to a line of code. It also makes the source file more compact on disc and
faster to load, although given the speed of modern desktop computers and the size of
their discs, this is now of secondary importance.

Defining words
Defining words present a special case of definition. This is because, as the word
breaks down into two parts, more care should be given both to indentation and to
commenting:

: WORDN \ n1 -- ; -- n3 ; function to ...
 CREATE \ defining portion
 ... \ lay down data
 DOES> \ execution portion
 ... \ process data ...
;

The CREATE and DOES> words should be indented to below the name of the word.
The code in the CREATE and DOES> portions should then be indented by further
spaces. The layout of DOES> and ; also applies to ;CODE and END-CODE. It is also
often found useful to document the stack action of the relevant portion of the word
on the line with the CREATE and DOES> words:

: WORDN \ n1 n2 -- ; -- n3 ; function to ...
 CREATE \ n1 n2 -- ; defining portion
 ... \ lay down data
 DOES> \ -- n3 ; execution portion
 ... \ process data ...
;

Control Structure layout
Control structures should be laid out for ease of understanding, and to easily spot
overlapping or incomplete structures. To this end, indenting and the use of many
lines makes the layout easy, especially for inexperienced Forth programmers.

Flags and limits
As Forth uses a postfix notation, the flag used to control program flow is specified
before the structure or test which uses it. The flag should be identified on the line
immediately preceding the test which will use it, as should loop limits:

 VAR @ \ get flag
 IF \ if set ...
 ...
 THEN

Code Layout

137

 VAR @ 0 \ make loop limits
 DO \ for each ...
 ...
 LOOP
 VAR1 @ VAR2 @ AND \ this and this
 VAR3 @ OR \ or this
 IF
 ...
 THEN

Indenting
For ease of reading, the start and end words of a control structure should be placed
on lines by themselves. This makes them easy to spot - for presence or absence. The
code within the structure should then be indented by a uniform amount:

 ...
 DO
 ...
 LOOP
 ...

 ...
 IF
 ...
 ELSE
 ...
 THEN
 ...

 ...
 BEGIN
 ...
 WHILE
 ...
 REPEAT
 ...

 ...
 CASE
 ... OF ENDOF \ case 1
 ... OF ... ENDOF \ case 2
 ... OF ... \ big case 3
 ...
 ENDOF
 ... \ default
 ENDCASE
 ...

At the end of a control structure, the structure termination word will be without
indentation and back below the start of the structure, ensuring that starts and ends of
structures are vertically aligned, it is easy to see an unbalanced structure or piece of
code. See above for examples.

Short Structures
If the code within a control structure is very short, then it is good practice to leave the
start and end of the structure on one line, with the body of the structure. However,
what constitutes a short structure is very subjective.

 ...
 DO I . LOOP

Code Layout

138

Note that there is more than one space between the DO and the I ., and again to the
LOOP. This helps the code to retain phrasing.

I’ve changed my mind
The above layout for control structures was defined in the late 1980s when we
trained a large number of people with very little programming experience. We were
teaching them Forth as a first programming language. Nowadays, the majority of the
people we train have had some exposure to programming. Teaching a Java
programmer the meaning of an address and I/O programming can be a frightening
experience just after doing a bomb-disposal machine!

Over the years, my coding style has changed, for the better I hope. I have also been
able to follow the code produced by several good Forth programmers over a period
of several years, as they move from novice Forth programmers to very good Forth
programmers. Once a programmer becomes fluent in Forth, he (and there are very
few shes in programming, but that’s a separate topic) tends to write longer
definitions. This is a mistake, because code reuse goes down and “call by text editor”
goes up (a bane of C programmers), leading to less maintainable and less modifiable
code.

Particularly for IF ... ELSE ... THEN and DO ... LOOP structures, I now
recommend that IF and DO are at the end of the line that generates the flag or limits.

 ... DO \ -- a b
 ...
 LOOP
 ...

 ... IF \ -- c d
 ...
 ELSE
 ...
 THEN

There are two reasons for this. The first reason is that I am now writing shorter
words, and so I want to see more words on the screen at the same time, and so I want
fewer lines per word without sacrificing layout. The second reason is that I know
that IF consumes a flag and that DO consumes an index and a limit. What matters,
both for me and for less experienced programmers, is to remember the stack
condition at the repetition of the loop structure or the entry to the conditional clause.
My thanks to Rick van Norman for my introduction to (and his persistent promotion
of) this format.

Layout of code definitions
The layout of code definitions will be slightly different from the layout of high-level
definitions. For a start, the layout will be more vertical than the corresponding high-
level code. If a word is being defined, the top line of the definition will reflect that of
any other word - ie it will have a stack comment and a brief description. If a label is
being defined, then there may not be a stack effect, but there will still be a brief
description of the function of the procedure or sub-routine. The code that then
follows may be very vertical, or may be phrased more:

CODE WORD1 \ n1 -- n2 ; word to ...
 MOV AX, BX
 ADD BX, # 03
 XCHG BP, SP INC BP INC BP XCHG BP, SP

Code Layout

139

 ...
END-CODE

Of course, there will still be plenty of in-line comments.

Constants, Values and Variables
Constants require an input value as part of their definition. This value should appear
at the left-hand end of the line. If several constants are being defined at one time, the
word CONSTANT should line up vertically, especially if the values correspond to
items of the same size, such as 8/16/32 bit masks.

It is good practice to define all constants, values and variables in one place in the file,
or in one file in the set. If a variable or constant is only used in one section of a file,
of course it may be defined in that section. However, the appearance of such
variables may indicate an unwillingness to use the Forth data stack because it is
getting too deep. This is often a sign of badly factored code.

They all require stack comments! This is not just because the stack comment is a
place to indicate what data type is being returned, but also because they need
documentation too.

If variables are to be pre-initialised to anything other than zero, the
initialisation value should follow the definition of the variable:

VARIABLE BILL \ -- addr ; holds what he has
 25 BILL !
VARIABLE BEN \ -- addr ; holds what he has
 FLOWERPOT BEN !

Buffers
A buffer may be defined and require more than a cell of dictionary space. This space
may be pre-initialised, or it may be a scratch area, or otherwise filled by the
application. The buffer should be defined and any pre-initialisation should
immediately follow its definition:

CREATE BILL \ -- addr ; the ...
 10 ALLOT \ for a hosted Forth in RAM
 S” this" BILL PLACE \ preset to this

If you are writing for both hosted and embedded systems, RAM-based buffers can be
defined using BUFFER: (len -- ; -- addr), e.g.

#12 BUFFER: BILL \ -- addr

BUFFER: is defined in the draft ANS cross compiler proposal. If your hosted system
does not provide BUFFER: you can define it very easily as:

: BUFFER: \ len -- ; -- addr ; create len-byte buffer
 CREATE ALLOT
;

Data Tables
A table may be predefined - such as a look-up table. This will usually be created in
the dictionary, and will include its data. The important point is consistency and ease
of reading:

Code Layout

140

CREATE TABLE \ -- addr ; bit-pattern table
 1 C, 2 C, 4 C, 8 C, \ b0..b3
 16 C, 32 C, 64 C, 128 C, \ b4..b7

Note that the numbers and the commas line-up. This makes reading easy.
Note however that these are bit patterns. The more pedantic may prefer the
following:

CREATE TABLE \ -- addr ; bit-pattern table
 $01 C, $02 C, $04 C, $08 C, \ b0..b3
 $10 C, $20 C, $40 C, $80 C, \ b4..b7

Case questions
The case of the words used in a Forth application is a very delicate issue as different
programmers have different preferences. All MPE Forth systems are case-insensitive,
and so the case used is only a recommendation, not a requirement.

It is recommended that lower case be used throughout. Firstly, this is easier to type,
and secondly it is easier to read. Using upper case throughout is not recommended.

However, it may be found that certain classes of words are better capitalised. These
might be control structures or constants, or the name of the word as it is defined.
Each organisation will find any preference and use it. An important point to
remember with any decision made is to be consistent throughout all source code. The
following examples are deliberately in mixed case, and do not follow previous
convention.

: WORD1 \ n1 n2 -- ; word does ...
 ... \ lower case code
 ...
;

: word2 \ n1 -- n2 ; word to ...
 ... IF \ lc code, UC structure
 ...
 ...
 THEN
;

23 CONSTANT BILL \ n – avoids magic number
: word3 \ n1 -- ; function to ...
 ... \ lower case code
 BILL + \ upper case constant
 ... \ lower case code
;

141

19 Exercises

Stack operations
In general these little exercises are best done by dealing with the bottom of the stack
first and reordering the top afterwards.

Exercise 1.1: Define the word 2DUP in terms of stack operations on single numbers.

: 2DUP \ x1 x2 -- x1 x2 x1 x2
 <your code>
;

Exercise 1.2: Define NIP (x1 x2 -- x2)

Exercise 1.3: Define TUCK (x1 x2 -- x2 x1 x2)

Exercise 1.4: Define the word 3DUP in terms of stack operations on single and
double items.

: 3DUP \ x1 x2 x3 -- x1 x2 x3 x1 x2 x3
 <your code>
;

Exercise 1.5: Define the word 4DUP in terms of stack operations on single and
double items.

: 4DUP \ x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2 x3 x4
 <your code>
;

Arithmetic
Exercise 2.1: Give Forth commands that would print in decimal the largest -ve
number and the largest +ve number that can be held as signed 16 bit numbers.

Hint: The hexadecimal representation of these numbers is -8000 and 7FFF for a 16
bit Forth.

Exercise 2.2: Would you expect the command sequence -15000 4 * . to give
the correct answer on a 32 bit Forth and on a 16 bit Forth? If not why not?

Exercise 2.3: Consider the evaluation of the following expressions:
100 0 /
-10 4 /
-32768 -1 /
The ANS Forth specification gives two preconditions for the division operation for (
n1 n2 -- n3). Firstly, the denominator n2 must not be zero, and secondly
n1/n2 must lie within the range of signed single-cell numbers. If either of these
conditions is violated, an error condition exists, but the specification does not tell
what will happen in such cases.

Are the pre-conditions for / (n1 n2 -- n3) satisfied in these expressions? If
so, what are the values of n3? Would there be a difference between the results on 16
and 32 bit systems? How will the results vary for floored and symmetric division?

Exercises

142

Exercise 2.4: Define the word FUNC2 which has the following specification:

FUNC2 a b c -– d
d = a + 7*(b+c)

Exercise 2.5: Here are the specifications of some functions that can be coded in
Forth using standard arithmetic operators along with DUP and SWAP. Edit their Forth
definitions onto a file, compile it and test the definitions.

FUNC5 x y –- z
z = x^2 + 5y

FUNC6 x y –- z
z = 3*x^2 + 2y + y^2

FUNC7 x y –- z
z = 2 + x + x^2 + y + y^2

FUNC8 a b c –- d
d = a^2 + b^2 + c^2

FUNC9 x y –- z
z = x^2 + 2*x*y + y^2

Hint: this one may need a bit of lateral thinking. The definition consists of just 3
Forth words!

Exercise 2.6: Define Forth words with the following specifications.

FUNC10 x y -– z
z = x+xy

FUNC11 a b c -- a^2 b^2 c^2

Expects 3 stack items, removes them from the stack, and replaces them with their
squares.

Exercise 2.7: Define words OCTAL and BINARY which will set the system to base 8
and base 2 respectively. Try them out doing some octal and binary arithmetic. What
do you expect the system’s response will be to these commands?
HEX BASE @ .
OCTAL BASE @ .
BINARY BASE @ .
(If you think it will be to print 16, 8 and 2, think again!)

Define a word .BASE that will print the current number base in decimal. .BASE
should leave the number base as it finds it.

Define a word .BIN that prints the top item on the stack as an unsigned binary
number. .BIN should leave the number base as it finds it.

Exercise 2.8: The word +! is present in all Forth all systems, but can you define
your own version using the Forth words described so far? Call your version MY+!
and test it as shown above.

Hint: A solution can be obtained using the words

 @ ! + OVER SWAP

An alternative solution can be obtained using

Exercises

143

 @ ! + DUP ROT SWAP

Exercise 2.9: Define variables TEMP and PRESSURE and a word CHECK with the
following specification.

-- flag

Flag is true if the value stored in TEMP is less than 700 and the value stored in
PRESSURE is between 1200 and 2200 inclusive. Make sure that your definition of
CHECK produces the following results.

600 TEMP ! 1200 PRESSURE ! CHECK . (-1 ok)
2200 PRESSURE ! CHECK . (-1 ok }
2201 PRESSURE ! CHECK . (0 ok)
2200 PRESSURE ! 700 TEMP ! CHECK . (0 ok)
1199 PRESSURE ! -1 TEMP +! CHECK . (0 ok)

Exercise 2.10: Define the word TEST with the following specification.

n -- flag

Leaves a true flag if n < 50 or n >100, and leaves a false flag otherwise.

Exercise 2.11: Define the words >= and <= with the following specs.

>= \ n1 n2 -- flag

Flag is true if n1 is greater than or equal to n2

<= \ n1 n2 -- flag

Flag is true if n1 is less than or equal to n2 and false otherwise.

Exercise 2.12: Trace the execution of 20 10 MAX.

Code and test a definition for MIN. This has the specification:

MIN n1 n2 -- n3

Where n3 is the signed minimum of n1 and n2.

Exercise 2.13: Define versions of MAX and MIN with an IF ... THEN construct,
i.e., without using an ELSE.

An IF construct need not have an ELSE. For example, consider a possible definition
for the standard word ABS. This takes a signed number from the stack and replaces it
with a positive number of the same magnitude, as in:

100 ABS . <cr> 100 ok
-200 ABS . <cr> 200 ok

The definition of ABS requires a word we have not introduced yet, which is
NEGATE. It just changes the sign of the top stack item.
: ABS (n -- abs[n])
 DUP 0<
 IF NEGATE THEN
;

Exercises

144

Exercise 2.14: Define words to meet the following specifications.

TEST1 n1 -- n2

If $n_1 > 100$
then $n_2 = 2 times n1
else n2 = n1 - 20

TEST2 n1 n2 -- n3

If n1 > n2
then n3 = 1000
else n3 = n1

Exercise 2.15: Suppose the variables TEMP and HEATER-SWITCH have been
declared as part of an industrial simulation. TEMP holds a simulated temperature and
HEATER-SWITCH holds a value that indicates whether a simulated heater is on or
off. Code a word STC (``simulate temperature change'') which has the following
spec.

If the value held in HEATER-SWITCH is non zero, add 2 to the value held in TEMP
otherwise subtract 1 from the value held in TEMP.

Exercise 2.16: Define a word .B (``print boolean'') which removes the top stack
item and prints ``true'' if its value is non zero and ``false'' if its value is zero. The
word can be used like this:

5 6 < .B <cr> true ok

Note that although the definition of .B contains an IF construct it does not need to
contain a test!

Exercise 2.17: Studies have suggested that Forth applications use ``if'' structures
much less frequently than C or Pascal. If this is the case it is probably because Forth
encourages a style which ``hides'' decisions within other words. For example the
definition of ABS can be written without an IF, can you see how?

Hint: The definition is three words long, and the word you need to make the hidden
decision is MAX.

Exercise 2.18: A very early description of an algorithm for computing a
mathematical result is Euclid's method for computing the greatest common divisor of
two numbers. This algorithm is presented at the start of Euclid book 7, along with a
proof that it will always generate the correct result.

Recall that the GCD of two whole numbers is the greatest whole number that can be
divided into both of them with no remainder. So the GCD of 16 and 24 is 8 for
example. In Euclid's time (around 300B.C.) numbers were reasoned about in terms of
lines of a certain length. Instead of using x to represent a quantity they would talk
about a straight line AB. The length of AB would represent the quantity under
discussion. Give two lines AB and CD, each an exact number of units in length, the
problem is to find the longest line that can be used to measure both AB and CD

Exercises

145

exactly. For example, given lines AB and CD of lengths 26 and 16 units, a line of 8
units will fit into AB three times and into CD two times. Thus 8 becomes the greatest
common “measure” of 24 and 16.

An important idea associated with common measure came from Eudoxus, a pupil of
Plato and a renowned mathematician active around 400 B.C. He noted that the
greatest common measure of lines AB and CD is the same as that of lines AB and
AB + CD. To see this, we first reason that the greatest common measure of AB and
CD must be a common measure of AB and AB + CD, for since it can measure both
AB and CD it can measure AB + CD. Secondly, we reason that it must be the
greatest common measure, for if there were a greater common measure for AB and
AB + CD, this would measure AB, hence it would measure the AB part of AB + CD,
and hence it would have to be able to measure CD since it is a measure for AB + CD,
and thus it would be a common measure for AB and CD, which contradicts our
assertion that it is greater than the greatest common measure of AB and CD.

Euclid inverted this. Let EF be the same length as AB + CD, and consider the lines
(numbers) AB and EF. Subtract the smaller from the larger (i.e., AB from EF) and
we obtain a line of length CD. Now lines AB and CD have the same common
measure as lines AB and EF. The importance of inverting Eudoxus' procedure is that
it gives a process that when repeated, must finish, since we are generating pairs of
lines that are getting shorter by some units of length at each stage.

This suggests the following algorithm, which is a slight simplification of that found
at the start of Euclid book 7. To find the GCD of any two numbers:

1) Using any unit measure draw two lines whose measures are equal to the two
numbers (e.g., for numbers 24 and 16 draw lines 24 units and 16 units in length).

2) Label the larger line AB and the smaller CD.

4) Subtract CD from the length of AB to give lines CD and AB - CD.

5) If these two lines are equal in length, this length is the greatest common measure
of the original two lines. If not take CD and AB – CD as a new pair of lines for the
next stage of the method.

6) Continue at step 2.

Code Euclid’s algorithm in Forth, with the following specification:

GCD x y -- z

z is the greatest common divisor of x and y.

Hint: Define a word ORDER which removes two numbers from the stack and
replaces them in the order, smaller larger. Use ORDER within a BEGIN ...
WHILE ... REPEAT loop.

Exercise 2.19: Code a version of GCD using Euclid's algorithm and a BEGIN ...
UNTIL loop. Perform at least the following tests on your definition:

16 24 GCD .<cr> 8 ok
24 16 GCD . <cr> 8 ok
 8 8 GCD .<cr> 8 ok

Exercises

146

Exercise 2.20: The combined electrical resistance R offered by two resistors with
values R1 and R2 connected in parallel is given by:

R = {{R1 * R2} / {R1 + R2}}

Define a word //RES with the following spec:

//RES R1 R2 -- R

Leaves R, the resistance obtained by connecting R1 and R2 in parallel.

Hint: The best solution is three words long.

Define a word ///RES which calculates the value of three resistors connected in
parallel.

Hint: The best solution is two Forth words long and uses //RES.

Exercise 2.21: MOD can be used to define the greatest common divisor function.
Given any numbers x and y we can obtain new values x’ and y’ from:

x’ = y
y’ = x mod y

If we carry on generating new pairs of numbers like this until the y value is zero, the
corresponding x value will be the greatest common divisor of the original x and y.
For example if the original values of x and y are 24 and 16, we would get the
following x and y values during the calculation:

x y Notes

16 24 16 mod 24 = 16, this will be the next y value.

24 16 24 mod 16 = 8, this will be the next y value.

16 8 16 mod 8 = 0, this will be the next y value.

8 0 Since y = 0 we are finished, result is 8.

Using the method illustrated here define a GCD function using a BEGIN ...
WHILE ... REPEAT loop and the MOD function. GCD should remove two
numbers from the stack and leave their greatest common divisor.

Input, output and loops
Exercise 3.1: Define a word X that waits for a character to be input at the keyboard,
and then outputs the character and its ASCII code. Using [CHAR], define a word
STAR that outputs an asterisk. STAR could be used as follows:

STAR <cr> *ok

Exercise 3.2: Define a word TEST1 that reads characters from the keyboard and for
each key entered displays both the character and its ASCII code. Terminate on
receiving a carriage return code.

Exercises

147

Define a word TEST2 that reads characters from the keyboard, ignores all characters
that are not upper case letters, and for upper case letters converts A to B, B to C, ..., Z
to A and then outputs the resulting codes to the screen.

Hint: use WITHIN to test whether a character is an upper case letter.

Define a word TEST3 that reads characters from the keyboard, converts upper case
characters to lower case, and outputs to the screen.

Exercise 3.3: Define a word EVENS with the following spec:

EVENS n --

Prints all even numbers between 0 and $2n$.

Hint: The loop limit n is on the stack when you enter EVENS.

Exercise 3.4: Define a version of SPACES (n --) called MY-SPACES that
deals with the 0 case correctly. i.e., 0 MY-SPACES should print 0 spaces. What
would/should such a word do if n is less than 0?

Exercise 3.5: Using the word STAR, which you can define as:

: STAR (--) ASCII * EMIT ;

Define a word STARS that takes a number from the stack and prints that many
asterisks. For example:

5 STARS <cr> *****ok
7 STARS <cr> *******ok

Exercise 3.6: In the following exercises make use of the words STAR and STARS
defined in the previous exercise.

Define a word RECT that prints an 8 by 5 rectangle of asterisks as follows:

RECT <cr>

* *
* *
* *
********ok

Hints: To keep the code looking as simple as possible use the words STAR and
STARS defined in the previous exercise, and define and use the following words:

MARGIN output carriage return/line feed and 5 spaces.

HORIZONTAL output a margin and 8 stars.

Exercises

148

VERTICALS print the vertical sides of the rectangle

Exercise 3.7: Define a word CHARACTERS with the following specification.

CHARACTERS n --

Input n characters from the keyboard (where n>0) and output each one to the
screen before the next is input.

Example usage could be:

6 CHARACTERS <cr> QWERTYok

Exercise 3.8: Define a word SMALL with the following spec.

SMALL n --

Input characters from the keyboard, convert upper case alphabetic characters
to lower case, and display the characters on the screen until an ASCII space is
received or n characters have been input.

Memory
Exercise 4.1: How do you suppose ALLOT is defined?

How do you suppose VARIABLE is defined?

Exercise 4.2: Suppose we define a 16 byte buffer with:

CREATE BUFF1 16 ALLOT

Describe the effect of executing

HEX 1234 BUFF1 C!

Make sure you check your answer by actually performing the operation (in hex) and
observing its effect on locations BUFF1 and BUFF1 + 1. The word DUMP (addr
len --) is usually available.

Exercise 4.3: Define you own version of DUMP. Call it MY-DUMP. Don't worry too
much about the finer details like formatting the output in columns and displaying the
ASCII characters.

Define WDUMP which takes the same arguments as DUMP but displays the 16 bit
contents of count words starting at addr.

Hint: Use the control structure

DO ... 2 +LOOP

at +LOOP the top stack item is removed and added to the index, so in this case the
index will go up in steps of 2. This kind of loop terminates when the index reaches or
passes the limit.

Exercises

149

If you are using a 32 bit Forth system define LDUMP which takes the same arguments
as DUMP but displays the 32 bit contents of count words starting at addr.

Exercise 4.4: Bytes of data are compiled with C,. Write a specification for this
word, and show how you would use it when setting up a 4 byte table called NAME
containing the ASCII codes for ``J'' ``O'' ``H'' and ``N''.

Suggest how the word ``comma'' is defined.

Hint, the words HERE and ALLOT will be useful.

Exercise 4.5: Show how FILL (addr len char --) could be defined
using CMOVE, not as a block move, but in the ``wrong direction''. Then use FILL to
define the words ERASE and BLANK. The words FILL, ERASE and BLANK have all
been described earlier.

Exercise 4.6: Consider a temperature sensor connected via an A to D converter and
giving readings that vary between 0 at 5 C and 255 at 160 C. Assuming that the
variation in the reading is linear with temperature define a word called DEGREES
that will convert a temperature value in degrees C to the equivalent A to D converter
reading.

Exercise 4.7: Define a word OF-TEMP-TABLE with the following spec.

OF-TEMP-TABLE n -- t

t is the temp of element n in the table (0 <= n < 5).

Example usage:

2 OF-TEMP-TABLE . <cr> 3349 ok

Exercise 4.8 Non linear temperature conversion via table lookup and interpolation.

Suppose a temperature sensor connected to an A to D converter has been calibrated
with the results as shown in the following table.

600 12.36
1100 23.42
1600 33.49
2100 42.02
2600 50.10

We consider how to define a word READING->DEG which converts a reading taken
from the converter to the equivalent temperature. First we see how to do the
conversion by hand, without any particular reference to Forth. Suppose an A to D
reading of 1507 is received. This is between the values 1100 and 1600 in the table, so
the required temperature will be between 23.42 and 33.49.

To estimate the temperature we use a technique called ``linear interpolation''. The
reading value 1507 is 81.4% (407/500) of the way between table values 1100 and

Exercises

150

1600, and with linear interpolation we estimate the corresponding temperature to be
81.4% of the way between 23.42 and 33.49.

temp = 23.42 + {407 / 500} * (33.49 - 23.42)

Since we are limiting ourselves to integer arithmetic and temperatures are given to
two decimal places of accuracy, we will scale the temperatures by a factor of 100 and
hold them in a table defined as follows:
CREATE TEMP-TABLE \ -- addr
 1236 , 2342 , 3349 , 4202 , 5010 ,

Note that we have not bothered to record the A to D readings in a table. This is
because they occur at regular intervals and the data they provide can easily be
encoded in the logic of our program.

We will define a word to read values from the temperature table. You were asked to
provide this definition in the previous exercise.

Now here is the start of one possible way to define READING->DEG.
: READING->DEG (n – t)
\ convert a-d reading to scaled temperature
 600 -
 500 /MOD (r q)
 ...
;
To see what is happening here, consider the execution of the example we took
before:

1507 READING->DEG

The values shown as r and q in the comment that follows /MOD will then be r=407
and q=1. The value of q tells us that the required temp is between 1 OF-TEMP-
TABLE and 2 OF-TEMP-TABLE. The value of r tells us that the required temp will
be r 500ths of the way between these two values.

Complete the definition of READING->DEG using the comments in the following
outline code. Note that in the comments t[q] is used to represent the temp at position
q of the temperature table (q=0 to 4).
: READING->DEG (n -- t)
\ convert a-d reading to scaled temperature
 600 -
 500 /MOD (-- r q)
 (-- r q q+1)

(-- r t[q] t[q+1])
(-- r t[q] t[q+1]-t[q])

(-- t[q] {t[q+1]-t[q]}*r/500)
(-- t[q]+{t[q+1]-t[q]}*r/500)
;
Note the use of the {} brackets in place of the () within the comment. This is
because the) is used to indicate the end of the comment. The use of the backslash
comments would have avoided this problem.

Exercises

151

Defining words
Exercise 5.1: Define a word +CONSTANT which defines words which record a 16
bit value at compile time and add this word to the value at the top of the stack at run
time. Example usage:

 5 +CONSTANT PLUS5
 10 +CONSTANT PLUS10
100 PLUS5 PLUS10 . <cr> 115 ok

Exercise 5.2: Complete the following definition of BYTES.

For our next example, we create a defining word BYTES which can be used to set up
tables of 8 bit values. Example usage of BYTES is:

10 BYTES BTABLE1
20 BYTES BTABLE2
77 0 BTABLE1 C! (store 77 in byte 0 of BTABLE1)
40 1 BTABLE1 C! (store 40 in byte 1 of BTABLE1)

So 0 BTABLE1 returns the address of byte 0 in BTABLE1, 1 BTABLE1 returns the
address of byte 1 in BTABLE1, etc.

Hints: You need to add just one word of compile time action and just one word of
run time action.

The comment that follows DOES> shows what is on the stack when the code
following DOES> commences execution.

: BYTES
 CREATE ...

 DOES> (-- index addr) ... ;

Exercise 5.3: Provide definitions for WITEMS and LITEMS which can be used like
BYTES but defines tables whose elements are 16 and 32 bits wide. For example 10
WITEMS TABLE1 would define an array of 10 16-bit items called TABLE1.

Exercise 5.4: Another use of CREATE ... DOES> is to define the opcode classes
for an assembler. The simplest class of opcodes for an assembler to handle are those
which have a fixed opcode. Here are some such opcodes for the 8086 instruction set

Opcode Mnemonic

C3 RET
FA CLI
FB STI
9B WAIT
F0 LOCK

In a Forth assembler each of the mnemonics such as RET and CLI would be defined
as a Forth word. When executed these words compile their associated 1 byte opcode
into the next free byte of dictionary memory.

Suppose the word CLASS1 is used to define the given instructions. Usage will be:

HEX
C3 CLASS1 RET

Exercises

152

FA CLASS1 CLI
...

The compile time action for CLASS1 is to compile the 1 byte opcode into the next
free dictionary location. The run time action is to retrieve the opcode from the
parameter field and compile it into the next free byte of the dictionary. For example
the action of RET is to compile the byte C3, which is the opcode for the 8086 RET
instruction.

Now see if you can define CLASS1.

Miscellaneous
Exercise 6.1: Suppose the following definitions are loaded.

: TEST1 ." old version " ;

: TEST2 TEST1 ;

: TEST1 ." new version " ;

What will be the output generated by:

TEST1 TEST2

153

20 Solutions to Exercises

Stack operations
Solution 1.1: Define the word 2DUP in terms of stack operations on single numbers.
: 2DUP \ x1 x2 -- x1 x2 x1 x2
 OVER OVER
;
Exercise 1.2: Define NIP (x1 x2 -- x2)
: nip \ x1 x2 -– x2
 swap drop
;
Solution 1.3: Define TUCK (x1 x2 -- x2 x1 x2)
: tuck \ x1 x2 -- x2 x1 x2
 swap over
;
Solution 1.4: Define the word 3DUP in terms of stack operations on single and
double items.

: 3DUP \ x1 x2 x3 -- x1 x2 x3 x1 x2 x3
 dup 2over rot
;

Solution 1.5: Define the word 4DUP in terms of stack operations on single and
double items.
: 4DUP \ x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2 x3 x4
 2over 2over
;

Arithmetic
Solution 2.1: Give Forth commands that would print in decimal the largest -ve
number and the largest +ve number that can be held as signed 16 bit numbers.
HEX -8000 DECIMAL .
HEX 7FFF DECIMAL .
Solution 2.2: Would you expect the command sequence -15000 4 * . to give
the correct answer on a 32 bit Forth and on a 16 bit Forth? If not why not?

No, because the ``correct'' result is -60000 which cannot be expressed as a 16 bit 2's
complement number and so fails on a 16 bit system.

Solution 2.3: Consider the evaluation of the following expressions:
100 0 /
 n2=0 => fail
-10 4 /
 Symmetric: n2<>0 => ok, result –2 in range
 Floored : n2<>0 => ok, result –3 in range
-32768 -1 /
 n2<>0 => ok, result = 32768, fail on 16 bit system.

Solution 2.4: Define the word FUNC2 which has the following specification:

Solutions to Exercises

154

FUNC2 a b c -– d
d = a + 7*(b+c)

: FUNC2 \ a b c -- d
 + 7 * +
;
Solution 2.5: Here are the specifications of some functions that can be coded in
Forth using standard arithmetic operators along with DUP and SWAP. Edit their Forth
definitions onto a file, compile it and test the definitions.

FUNC5 x y –- z
z = x^2 + 5y

: FUNC5 \ x y –- z
 5 * SWAP DUP * +
;

FUNC6 x y –- z
z = 3*x^2 + 2y + y^2

: FUNC6 \ x y -- z
 DUP DUP \ -- x y y y
 * SWAP \ -- x y^2 y
 2 * + \ -- x y^2+2y
 SWAP DUP * \ -- y^2+2y x^2
 3 * + \ -- z
;

FUNC7 x y –- z
z = 2 + x + x^2 + y + y^2

: FUNC7 \ x y –- z
 DUP DUP * + \ -- x y+y^2
 SWAP \ -- y+y^2 x
 DUP DUP * + \ -- y+y^2 x+x^2
 + 2+
;

FUNC8 a b c –- d
d = a^2 + b^2 + c^2

: FUNC8 \ x y -- z
 DUP * \ -- a b c^2
 SWAP DUP * \ -- a c^2 b^2
 + \ -- a b^2+c^2
 SWAP DUP * \ -- b^2+c^2 a^2
 +
;

FUNC9 x y –- z
z = x^2 + 2*x*y + y^2
Use x^2 + 2xy + y^2 = (x+y)*(x+y).

: FUNC9 \ x y -- z
 + DUP *
;

Solution 2.6: Define Forth words with the following specifications.

FUNC10 x y -– z
z = x+xy

: FUNC10 \ x y – z
 OVER * +
;

Solutions to Exercises

155

FUNC11 a b c -- a^2 b^2 c^2

Expects three stack items, removes them from the stack, and replaces them with their
squares.
: FUNC11 \ x y -- z
 DUP * \ -- a b c^2
 ROT DUP * \ -- b c^2 a^2
 ROT DUP * \ -- c^2 a^2 b^2
 ROT \ -- a^2 b^2 c^2
;

Solution 2.7: Define words OCTAL and BINARY which will set the system to base 8
and base 2 respectively.
: OCTAL (--) 8 BASE ! ;
: BINARY (--) 2 BASE ! ;
: .BASE \ --
 BASE @ DUP DECIMAL . BASE !
;
: .BIN \ n --
 BASE @ SWAP \ -- base n
 BINARY U.
 BASE !
;

Solution 2.8: The word +! is present in all Forth all systems, but can you define
your own version using the Forth words described so far? Call your version MY+!
and test it.
: MY+! \ n addr --
 SWAP OVER @ + SWAP !
;

: MY+! \ n addr --
 DUP @ ROT + SWAP !
;

Solution 2.9: Define variables TEMP and PRESSURE and a word CHECK with the
following specification.

-- flag

Flag is true if the value stored in TEMP is less than 700 and the value stored in
PRESSURE is between 1200 and 2200 inclusive. Make sure that your definition of
CHECK produces the following results.

600 TEMP ! 1200 PRESSURE ! CHECK . (-1 ok)
2200 PRESSURE ! CHECK . (-1 ok }
2201 PRESSURE ! CHECK . (0 ok)
2200 PRESSURE ! 700 TEMP ! CHECK . (0 ok)
1199 PRESSURE ! -1 TEMP +! CHECK . (0 ok)

Solutions:
VARIABLE TEMP \ -- addr
VARIABLE PRESSURE \ -- addr

: CHECK \ -- flag

Solutions to Exercises

156

 TEMP @ 700 < \ -- flag1
 PRESSURE @ 1200 1201 WITHIN \ -- flag1 flag2
 AND
;

Alternative solution:
: CHECK \ -- flag
 TEMP @ 700 <
 PRESSURE @ 1199 > \ -- flag1 flag2
 PRESSURE @ 2201 < \ -- flag1 flag2 flag3
 AND AND
;

Solution 2.10: Define the word TEST with the following specification.

n -- flag
: TEST \ n –- flag
\ Leaves a true flag if n < 50 or n >100, and leaves
\ a false flag otherwise.
 DUP 50 < \ -- n flag1
 SWAP 100 > \ -- flag1 flag2
 OR
;

: TEST \ n -- flag
 50 101 WITHIN 0=
;

Solution 2.11: Define the words >= and <= with the following specs.

>= \ n1 n2 -- flag

Flag is true if n1 is greater than or equal to n2

<= \ n1 n2 -- flag

Flag is true if n1 is less than or equal to n2 and false otherwise.
: >= (n1 n2 -- flag) < 0= ;
: <= (n1 n2 -- flag) > 0= ;

Solution 2.12: Code and trace the execution of 20 10 MAX, where MAX is defined
as:
: MAX \ n1 n2 -– flag
 2dup >
 if drop else swap drop then
;
You may have to perform the trace manually, depending on the facilities of your
Forth system. For example on an optimised Forth, the following machine code may
result.
dis max
MAX
(0049EB70 3B5D00) CMP EBX, [EBP]
(0049EB73 0F8D0B000000) JNL/GE 0049EB84
(0049EB79 8B5D00) MOV EBX, [EBP]
(0049EB7C 8D6D04) LEA EBP, [EBP+04]

Solutions to Exercises

157

(0049EB7F E903000000) JMP 0049EB87
(0049EB84 8D6D04) LEA EBP, [EBP+04]
(0049EB87 C3) NEXT,
(24 bytes, 7 instructions)
 ok

2DUP -- 20 10 20 10
> -- 20 10 -1
IF (true) -- 20 10
DROP -- 20
THEN -- 20

Code and test a definition for MIN. This has the specification:

MIN n1 n2 -- n3

Where n3 is the signed minimum of n1 and n2.
: MIN \ n1 n2 -– flag
 2dup <
 if drop else swap drop then
;

Solution 2.13: Define versions of MAX and MIN with an IF ... THEN construct,
i.e., without using an ELSE.
: MAX \ n1 n2 -- flag
 2DUP <
 IF SWAP THEN
 DROP
;
: MIN \ nl n2 -- flag
 2DUP >
 IF SWAP THEN
 DROP
;

Solution 2.14: Define words to meet the following specifications.

TEST1 n1 -- n2

If $n_1 > 100$
then $n_2 = 2 times n1
else n2 = n1 - 20
TEST2 n1 n2 -- n3

If n1 > n2
then n3 = 1000
else n3 = n1

: TEST1 \ n1 -- n2
 DUP 100 >
 IF 2 * ELSE 20 - THEN ;

: TEST2 \ n1 n2 -- n3
 OVER <
 IF DROP 1000 THEN
;

Solutions to Exercises

158

Solution 2.15: Suppose the variables TEMP and HEATER-SWITCH have been
declared as part of an industrial simulation. TEMP holds a simulated temperature and
HEATER-SWITCH holds a value that indicates whether a simulated heater is on or
off. Code a word STC (``simulate temperature change'') which has the following
spec.

If the value held in HEATER-SWITCH is non zero, add 2 to the value held in TEMP
otherwise subtract 1 from the value held in TEMP.
: STC \ --
 HEATER-SWITCH @
 IF 2 ELSE -1 THEN
 TEMP +!
;

Solution 2.16: Define a word .B (``print boolean'') which removes the top stack
item and prints ``true'' if its value is non zero and ``false'' if its value is zero. The
word can be used like this:

5 6 < .B <cr> true ok
: .B \ flag --
 IF ." true" ELSE ." false" THEN
;

Solution 2.17: The definition of ABS can be written without an IF, can you see
how?
: ABS \ n1 -- n2
 DUP NEGATE MAX
;

You can also define ABS without IF and with simpler operations than MAX (which
often contains an internal branch):
: abs
 dup 0< tuck xor swap –
;
However, that depends on 2s-complement arithmetic and, on many CPUs, 0<
requires an internal branch.

Solution 2.18:

Code Euclid’s algorithm in Forth, with the following specification:

GCD x y -- z

z is the greatest common divisor of x and y.
While they are not equal
 Arrange pair so smaller is first 16 24 8 16
 Put copy of the first after second. 16 24 16 8 16 8
 Subtract the two rightmost 16 8 8 8
Endwhile
Delete the second number 8
This can be coded in Forth as:
: ORDER \ n1 n2 -- smaller larger
 2DUP >

Solutions to Exercises

159

 IF SWAP THEN
;

: GCD \ n1 n2 -- n3
 BEGIN
 2DUP <>
 WHILE
 ORDER OVER -
 REPEAT
 DROP
;

Solution 2.19: Code a version of GCD using Euclid's algorithm and a BEGIN ...
UNTIL loop.
: ORDER \ n1 n2 -- smaller larger
 2DUP >
 IF SWAP THEN
;

: GCD \ n1 n2 -- n3
 BEGIN
 ORDER OVER -
 DUP 0=
 UNTIL
 DROP
;

Solution 2.20: The combined electrical resistance R offered by two resistors with
values R1 and R2 connected in parallel is given by:

R = {{R1 * R2} / {R1 + R2}}

Define a word //RES with the following spec:

//RES R1 R2 -- R

Leaves R, the resistance obtained by connecting R1 and R2 in parallel.

Define a word ///RES which calculates the value of three resistors connected in
parallel.
: //RES (R1 R2 -- R) 2DUP + */ ;
: ///RES (R1 R2 R3 -- R) //RES //RES ;

Solution 2.21: Define a GCD function using a BEGIN ... WHILE ... REPEAT
loop and the MOD function. GCD should remove two numbers from the stack and
leave their greatest common divisor.
: GCD \ x y -- z ; z is the gcd of x and y
 BEGIN (-- x y)
 DUP (-- x y y)
 WHILE (-- x y)

 SWAP OVER (-- y x y)
 MOD (-- y mod)

 REPEAT
 DROP
;

Solutions to Exercises

160

Input, output and loops
Solution 3.1: Define a word X that waits for a character to be input at the keyboard,
and then outputs the character and its ASCII code. Using [CHAR], define a word
STAR that outputs an asterisk. STAR could be used as follows:

STAR <cr> *ok

: X \ --
\ Wait for char then output char and its ASCII code
 KEY DUP EMIT .
;

: STAR \ --
 [CHAR] * EMIT
;

Solution 3.2: Define a word TEST1 that reads characters from the keyboard and for
each key entered displays both the character and its ASCII code. Terminate on
receiving a carriage return code.
: TEST2 \ --
 BEGIN
 KEY DUP 13 <>
 WHILE
 DUP EMIT .
 REPEAT
 DROP
;

Define a word TEST2 that reads characters from the keyboard, ignores all characters
that are not upper case letters, and for upper case letters converts A to B, B to C, ..., Z
to A and then outputs the resulting codes to the screen.
: TEST2 \ --
 BEGIN
 KEY DUP
 [CHAR] A [CHAR] Z 1 + WITHIN IF (upper case)
 DUP ASCII Z = IF (Z code)
 DROP ASCII A
 ELSE (not Z code)
 1 +
 THEN
 EMIT
 ELSE
 DROP
 THEN
 REPEAT
;

Define a word TEST3 that reads characters from the keyboard, converts upper case
characters to lower case, and outputs to the screen.
CHAR a CHAR A - CONSTANT CASE-SHIFT

: TEST3 \ --

Solutions to Exercises

161

 BEGIN
 KEY DUP 13 <>
 WHILE
 DUP [CHAR] A [CHAR] Z 1+ WITHIN
 IF CASE-SHIFT + THEN
 EMIT
 REPEAT
;

Solution 3.3: Define a word EVENS with the following spec:

EVENS n --

Prints all even numbers between 0 and 2n.
EVENS (n --)
 0 DO I 2 * . LOOP
;

Solution 3.4: Define a version of SPACES (n --) called MY-SPACES that
deals with the 0 case correctly. i.e., 0 MY-SPACES should print 0 spaces. What
would/should such a word do if n is less than 0?
: MY-SPACES \ n -- ; print n spaces
 DUP IF
 0 DO SPACE LOOP
 ELSE
 DROP
 THEN
;

: MY-SPACES \ +n -- ; print n spaces
 0 MAX 0
 ?DO SPACE LOOP
;

Solution 3.5: Using the word STAR, which you can define as:

: STAR (--) [CHAR] * EMIT ;

Define a word STARS that takes a number from the stack and prints that many
asterisks.
: STARS (n --) 0 ?DO STAR LOOP ;

Solution 3.6: In the following exercises make use of the words STAR and STARS
defined in the previous exercise.

Define a word RECT that prints an 8 by 5 rectangle of asterisks as follows:

RECT <cr>

* *
* *
* *
********ok

Solutions to Exercises

162

: MARGIN (--) CR 5 SPACES ;
: HORIZONTAL (--) MARGIN 8 STARS ;
: VERTICALS (--)
 3 0
 DO MARGIN STAR 6 SPACES STAR LOOP
;
: RECT (--) HORIZONTAL VERTICALS HORIZONTAL ;

Solution 3.7: Define a word CHARACTERS with the following specification.

CHARACTERS n --

Input n characters from the keyboard (where n>0) and output each one to the
screen before the next is input.

: CHARACTERS \ n --
 0 DO KEY EMIT LOOP ;

Solution 3.8: Define a word SMALL with the following spec.

SMALL n --

Input characters from the keyboard, convert upper case alphabetic characters
to lower case, and display the characters on the screen until an ASCII space is
received or n characters have been input.

CHAR a CHAR A - CONSTANT CASE-SHIFT

: SMALL \ n --
 0 DO
 KEY DUP 13 =
 IF DROP LEAVE THEN
 DUP [CHAR] A [CHAR] Z 1 + WITHIN
 IF CASE-SHIFT + THEN
 EMIT
 LOOP
;

Memory
Solution 4.1: How do you suppose ALLOT is defined?

How do you suppose VARIABLE is defined? Many systems contain a variable DP
which contains the address of the next free space in the dictionary.
: ALLOT (n --) DP +! ;
: VARIABLE (-- ; -- addr) CREATE 1 CELLS ALLOT ;

Solution 4.2: Suppose we define a 16 byte buffer with:

CREATE BUFF1 16 ALLOT

Describe the effect of executing

HEX 1234 BUFF1 C!

Hex value 34 is stored at the byte address BUFF1. The following bytes are not
changed. The top 8 bits in the value 1234 are ignored, only the low 8 bits are used.

Solutions to Exercises

163

Solution 4.3: Define you own version of DUMP. Call it CDUMP.

Define WDUMP which takes the same arguments as DUMP but displays the 16 bit
contents of count words starting at addr.
: CDUMP \ addr n --
 0 DO
 DUP I + C@ .
 LOOP
 DROP
;
: WDUMP \ addr n --
 0 DO
 DUP I + W@ U. \ use @ on 16 bit Forths
 2 +LOOP
 DROP
;
If you are using a 32 bit Forth system define LDUMP which takes the same arguments
as DUMP but displays the 32 bit contents of count words starting at addr.
: LDUMP \ addr n --
 0 DO
 DUP I + @ U.
 4 +LOOP
 DROP
;
Further improvements can be made by using ?DO rather than DO (why) and by using
.R to provide fixed-width output.

Solution 4.4: Bytes of data are compiled with C,. Write a specification for this word,
and show how you would use it when setting up a 4 byte table called NAME
containing the ASCII codes for ``J'' ``O'' ``H'' and ``N''.

Suggest how the word ``comma'' is defined.

ALLOT c –

Allot 1 byte of space and store c in the location thus reserved.
CREATE NAME \ -- addr
 CHAR J C, CHAR O C, CHAR H C, CHAR N C,

Solution 4.5: Show how FILL (addr len char --) could be defined
using CMOVE, not as a block move, but in the ``wrong direction''. Then use FILL to
define the words ERASE and BLANK. The words FILL, ERASE and BLANK have all
been described earlier.
: FILL \ addr n byte --
 ROT (n byte addr)
 SWAP (n addr byte)
 OVER (n addr byte addr)
 C! (n addr)
 DUP 1 + (n addr addr+l)
 ROT 1 – CMOVE
;

: ERASE (addr n --) 0 FILL ;
: BLANK (addr n --) BL FILL ;

Solutions to Exercises

164

Solution 4.6: Consider a temperature sensor connected via an A to D converter and
giving readings that vary between 0 at 5 C and 255 at 160 C. Assuming the variation
in the reading is linear with temperature define a word called DEGREES that will
convert a temperature value in degrees C to the equivalent A to D converter reading.
: DEGREES \ y -- x ; convert y to machine units
 5 - 255 155 */
;

Solution 4.7: Define a word OF-TEMP-TABLE with the following spec.

OF-TEMP-TABLE n -- t

t is the temp of element n in the table (0 <= n < 5).
: OF-TEMP-TABLE (n -- t)
 CELLS TEMP-TABLE + @
;

Solution 4.8 READING->DEG
: READING->DEG (n -- t)
\ convert a-d reading to scaled temperature
 600 -
 500 /MOD (r q)
 DUP 1+ (r q q+1)
 OF-TEMP-TABLE SWAP
 OF-TEMP-TABLE SWAP (r t[q] t[q+1])
 OVER - (r t[q] t[q+1]-t[q])
 ROT 500 */ (t[q] {t[q+1]-t[q]}*r/500)
 + (t[q]+{t[q+1]-t[q]}*r/500)
;

Defining words
Solution 5.1: Define a word +CONSTANT which defines words which record a 16 bit
value at compile time and add this word to the value at the top of the stack at run
time. Example usage:

 5 +CONSTANT PLUS5
 10 +CONSTANT PLUS10
100 PLUS5 PLUS10 . <cr> 115 ok

: +CONSTANT \ n -- ; a –- a+n
 CREATE
 ,
 DOES>
 @ +
;

Solution 5.2: Complete the following definition of BYTES.

For our next example, we create a defining word BYTES which can be used to set up
tables of 8 bit values. Example usage of BYTES is:

10 BYTES BTABLE1
20 BYTES BTABLE2

Solutions to Exercises

165

77 0 BTABLE1 C! (store 77 in byte 0 of BTABLE1)
40 1 BTABLE1 C! (store 40 in byte 1 of BTABLE1)

So 0 BTABLE1 returns the address of byte 0 in BTABLE1, 1 BTABLE1 returns the
address of byte 1 in BTABLE1, etc.
: BYTES \ +n -- ; addr –- addr+n
 CREATE ALLOT DOES> +
;

Solution 5.3: Provide definitions for WITEMS and LITEMS which can be used like
BYTES but defines tables whose elements are 16 and 32 bits wide. For example 10
WITEMS TABLE1 would define an array of 10 16-bit items called TABLE1.
: WITEMS \ +n -- ; addr –- addr+2n
 CREATE 2* ALLOT DOES> SWAP 2* +
;

: LITEMS \ +n -- ; addr –- addr+4n
 CREATE ALLOT DOES> SWAP 4 * +
;

Solution 5.4: Another use of CREATE ... DOES> is to define the opcode classes
for an assembler. The simplest class of opcodes for an assembler to handle are those
which have a fixed opcode. Here are some such opcodes for the 8086 instruction set

Opcode Mnemonic

C3 RET
FA CLI
FB STI
9B WAIT
F0 LOCK

In a Forth assembler each of the mnemonics such as RET and CLI would be defined
as a Forth word. When executed these words compile their associated 1 byte opcode
into the next free byte of dictionary memory.

Suppose the word CLASS1 is used to define the given instructions. Usage will be:

HEX
C3 CLASS1 RET
FA CLASS1 CLI
...

Define CLASS1.
: CLASS1
 CREATE
 C,
 DOES>
 C@ C,
;

Note. This definition would be for an assembler which assembled code into Forth’s
memory space. Modern Forth systems often assemble code into a different area of
memory to conserve the Forth memory space. The definition of CLASS1 would then
be slightly different. The C, in the run time action would be replaced by a non
standard word to compile the opcode into the next free byte in the code area.

Solutions to Exercises

166

Miscellaneous
Solution 6.1: Suppose the following definitions are loaded.

: TEST1 ." old version " ;

: TEST2 TEST1 ;

: TEST1 ." new version " ;

What will be the output generated by:

TEST1 TEST2

 TEST1 TEST2 <enter> new version old version

167

21 Adopting and managing Forth

This question and response was posted on the comp.lang.forth newsgroup and
expresses many of the concerns of potential users, plus some typical responses from
users.
>The main thing I'm trying to get a better idea of here:
>In what cases should Forth be seriously considered?

My opinion:

1. Limited memory.
2. Lack of need for certain language-pervasive features
(garbage collection, strong typing).
3. Management willingness to train people rather than
expecting them to hit the ground running (this is actually a
fundamental software engineering principle, but it's
especially important to Forth if the reason discussed in #4 is
true in your case, and can be important due to the scarcity of
pre-trained Forth programmers).
4. The problem being solved has its own well-understood
language and terminology, so that Forth can be used to create
a computer language which resembles the problem's description
language.
5. The problem being solved is not well understood, but can be
explored interactively (for example, a hardware component for
which a controller is being written).

I saved this post as it raises so many issues. The rest of this chapter is an attempt to
pick out some answers and expansions on the points raised here. Apart from
discussing the benefits (and perhaps some limitations) of Forth, I also want to
indicate how to sell Forth into an environment that is possibly resistant to change.

The essence of what makes Forth great is interactivity and extensibility in a small
package. A particular difficulty in talking to C/C++ programmers who have not
experienced true interactivity or extensibility is that the programmers don’t know
that they might need interactivity or extensibility.

Interactivity and exploration
Embedded systems are often hard to debug without interactivity. In this environment,
the ability to test “bottom up” makes a significant contribution to program reliability,
eliminating the collection of hacks and kluges required at higher layers to overcome
limitations at lower levels. A secondary benefit is smaller code.

Interactivity can replace a large collection of expensive debugging tools. We once
were asked to find a problem in a bank note sorting machine. The company’s
engineers had spent two weeks with in-circuit emulators and their non-interactive
development system. We installed a simple Forth system in EPROM just using the
serial line, CPU and memory and started investigating. We wrote a very simple loop
that polled an I/O device until a key was pressed.

Adopting and managing Forth

168

VARIABLE ADDRESS

: T \ --
 begin adress @ c@ drop key? until
 key drop
;
Running this word and using a simple oscilloscope probe revealed that there was a
small glitch in one of the address decoders. The in-circuit emulator previously used
had slightly different timing which moved the problem elsewhere. A quick fix and
the problem had gone. After fitting the Forth (one hour) the problem was fixed in 40
minutes.

Interactivity provides tools for rapid debugging and focussing on the correct issues.
You have to experience it to believe it.

In a desktop PC environment, once you are in a place where a canned library
(Windows DLL, Linux shared library) cannot fix your problem, you are faced with
understanding the operating system API. Despite the best efforts of all concerned,
API documentation is all-to-often incomplete and sometimes just wrong. Operating
system bugs do exist. Interactive exploration in the PC environment is much faster
for the same reasons as in the embedded environment. A modern Forth for Windows
can provide a very rich debugging environment, not only for Forth programs, but
also for debugging DLLs.

Exploration (unfortunately called “playing” by far too many engineers) is a vital part
of producing better systems. In an unfamiliar world, searching for better techniques
and algorithms pays big dividends. Interactivity provides tools to do this.

Extensibility and notation
In many of the jobs I’m involved with, I work with electronic and mechanical
engineers and bomb disposal officers on embedded systems, or with construction
engineers, video people or ambulance crews on desktop PCs. They all have their own
jargon and terminology.

Forth’s ability to provide a language tuned to the way end-users think, plus it’s
ability to provide rapid prototyping, enables me to use code to talk to them about
what they really want, and then to provide the facilities they need in the final
application.

The “spiral lifecycle” approach that is so common encourages this approach. We
simply use extensibility and notation to improve the speed at which each turn of the
spiral is performed.

Limited memory
Forth encourages the use of small definitions, if for no other reason than that having
too many items on the stack makes a definition hard to understand and difficult to
maintain. The Forth execution model means that additional words do not cost much
at execution time, and modern Forth compiler technology can even eliminate that by
inlining small definitions.

Small definitions are easy to reuse and each reuse saves memory. The embedded
PowerNet TCP/IP stack is considered by one company to be at least half the size of
any other unmodified commercial stack. So much so, that it will fit in the boot ROM
of a custom CPU with an open Forth system.

Adopting and managing Forth

169

This is not just a trait of small scale embedded systems. In the mobile phone arena,
one company saved 30% of their ROM space by converting the games to a custom
Forth.

If you are delivering code electronically for remote updates, the cost of delivery may
be dominated by phone bills or on-line costs. This is an increasingly common
requirement. It may not seem much at each upload, but when you are updating
thousands of units, it is not uncommon to have to transfer several gigabytes to update
all units. Not all units are connected by fixed lines or broadband connections. The
tokenised Forth used by Europay’s Open Terminal Architecture was estimated to pay
for itself for only one update per year.

In the desktop environment, low memory footprint can have a surprising impact on
performance. Despite the huge amount of memory that is commonly fitted to desktop
PCs, first and second level cache is very restricted. Commonly, the difference
between CPU and main memory speeds is about 10:1. On desktop PCs, the ratio can
be 100:1. When a Forth application can fit entirely into cache, even an old-fashioned
threaded Forth implementation can run faster than a large compiled application. This
has been observed at Sun Microsystems. The tradeoffs between application
performance, interpretation and memory/CPU bandwidths have been explored in
some detail in “Interpretation and Instruction Path Coprocessing” by Eddy H.
Debaere and Jan M. Van Campenhout, MIT Press, ISBN 0-262-04107-3.

Why not the common language?
The simplest answer to this question is that one size does not fit all situations. The
arguments are not really about Forth, the reasons to use the common language are
also used against Pascal, Modula-2, Smalltalk, Eiffel and even Delphi. These are
often called minority languages, and managers tend to be scared of them. The issue
of programmer training and management is discussed later. For the moment we will
stick to more technical issues, particularly those affecting time and staff costs.

Languages from the C, C++ and Pascal/Delphi groups (sometimes called the Pasgol
group) do not have interactivity or extensibility. The interactivity is mostly provided
by invasive tools that upset performance, especially in real-time systems of any
description. Debugging sealed remote applications is vastly more difficult than
connecting to a running Forth application over a serial line or a Telnet session.
Extensibility in the Pasgol languages is largely confined to compile-time use of the
preprocessor. This contributes in turn to the use of additional external tools (Awk,
Perl, M4 and so on) to provide facilities that can be integrated very easily into Forth.

An example of this was the need to provide a scripting tool for a predefined
language. For many years we have used a derivative of Brad Rodriguez’ excellent
BNF parser implementation if Forth. A BNF parser is a tool that allows you to define
the grammar of a language together with the code required to handle it. The base
BNF parser is less than 100 lines of source code. This small size makes it perfectly
feasible to embed a scripting system inside an application and then define custom
languages for end-users. Doing this with a language that is neither interactive nor
extensible requires the production of custom parsers and compilers.

In embedded systems, memory is expensive. If you are making 10,000 units per year,
the cost of using more memory is significant. If you are making 100,000 or
1,000,000 units per year, the cost of additional memory may make the difference
between commercial success and failure.

If you are making low volume systems which interact with a poorly defined or
understood outside world, an interactive language can be a lifesaver. In one machine

Adopting and managing Forth

170

control application, we rewrote the motor drivers three times in a few days as we
increasingly understood what impact the working environment (water, mud and grit)
had on the mechanics (air lines, motors, leadscrews and so on) and how to
compensate for variability as the machine bedded in.

The essence of what makes Forth great is interactivity and extensibility in a small
package. If your application can take advantage of or requires interactivity, you can
see improvements in productivity of two or three times.

We used Forth 15 years ago, but ...
There are really two reasons for encountering this kind of objection:

1) We use C/C++ nowadays – it’s the common language. This has already been
discussed.

2) Someone at the company had a bad experience with a Forth project long, long
ago.

Recovering a brand from a bad reputation is far harder than selling to a new client. If
you have to go down this route be prepared for a difficult sell. The common opinions
and assumptions we see as part of the second response are:

1) Our programmer wrote his own Forth. When he left we couldn’t maintain the
Forth or the code.

2) Forth is interpreted and slow.

3) The system we bought then was not good enough for today’s requirements.
Yours must be the same.

4) Forth people are all unmanageable.

5) You can’t do X, Y, or Z in Forth.

6) You can’t write and maintain large programs in Forth.

7) Nobody uses Forth any more.

Our programmer wrote his own Forth. Some 15 or 20 years ago people built their
own hi-fi systems. The technical hobbies of today are very different from the
technical hobbies of then. There are now many good Forths from commercial or
open-source suppliers. Management must decide whether the benefits and associated
costs of tool-making justify keeping tool-making in-house. In the vast majority of
cases, buying in a compiler and perhaps getting a few days consultancy is the
cheapest option. Documentation is a management issue, and these days people know
a lot more about it than they did 15 years ago.

Forth is interpreted and slow. Modern Forths from commercial suppliers use
aggressive code generators. Some are based on very similar techniques to those used
by many C compilers and the benchmark results reflect this. The only way to
persuade some people is to provide some numbers. Our benchmarks and some tests
by users show that the current batch of Forth compilers are over 10 times faster than
those based on threaded code.

The system we bought then was not good enough for today’s requirements. The
“bad then, bad now” argument is similar to a proof by assertion. The easiest way to
overcome it is to ask them if they would use a 15 year-old C compiler. Part of the

Adopting and managing Forth

171

problem is that some people do continue to use 15 year-old obsolete and unsupported
C compilers.

Forth people are all unmanageable. We just have to face facts. Programmers (in
any language) have a reputation of being difficult to manage. Managing guru level
programmers is compared with herding cats. About ten years ago I heard the
manager of a large Japanese company’s research labs say:

“The problem with C++ is that it requires guru programmers: and guru
programmers don’t do maintenance.”

I have worked on Forth projects with up to 30 programmers. Whether such projects
work is a matter of management, a topic we will come to later. In practice, many
managers are much better at software management than they used to be. You have to
be aware that software management is a vital part of constructing software regardless
of the language involved.

You can’t do X, Y, or Z in Forth. It may be true. But it may also be ignorance. I
come across this opinion far too often. When I show them that it is no longer true, the
problem goes away. As with many other hostile opinions, the best way to deal with
them is to show them the numbers or give references to successful projects that
actually do what they say cannot be done.

You can’t write and maintain large programs in Forth. Yet again, point to large
Forth projects. The construction estimation package produced by Construction
Computer Software plan huge construction projects such as the new Hong Kong
airport. It contains over 850,000 lines of Forth source code. See
http://www.ccssa.com for more details. How they do it is very much based on the
techniques described in “The Mythical Man-Month” by Fred Brooks. Big projects
need management. If you don’t do it, they will fail.

Nobody uses Forth any more. Apart from people like IBM, Sun MicroSystems,
Apple, and NASA. Side issues for this discussion are that programming languages
are not the topic of discussion that they used to be and that some large and successful
companies using Forth consider it to be a trade secret of their success. At least one of
our clients sold their company and became very rich on the back of technologies
developed with Forth.

Managing Forth projects
If you do not believe how important software project management is, read “The
Mythical Man-Month” by Fred Brooks. There are also several books available about
software disasters and what to learn from them. Until fairly recently, many
companies treated software projects differently from those in other engineering
disciplines. Managing a project written in Forth is no different from managing any
other software project.

One of the considerable benefits of the surgical team approach promoted in “The
Mythical Man-Month” is that the project manager can retain technical competence
(and hence respect) of the programmers. The team administrator is the one who does
the spreadsheets.

Managers
A split between “the management” and the engineering staff is never productive. It is
part of the process for one to educate the other. The effective power is usually in the
hands of the management because they control the budgets. Experienced managers
have been scammed by technical staff many times in their careers and are rightly

http://www.ccssa.com

Adopting and managing Forth

172

cautious on occasion. What convinces them are cost and time numbers. Convincing
them by assertion rarely works. Indicating what you have done and why it works
may be effective.

In many departments there will be an opinion-maker in the engineering team. Such
people are valuable allies, but it is often not obvious who they are. Making contact
with them is important.

In leading or bleeding edge projects, ensuring the social cohesion of a programming
team is very important. In one multinational project is was involved in, our (Irish)
project officer remarked one evening that projects that started with a good party were
more likely to succeed.

Programmers
When programming was the new technology of the time, very few people knew
anything about it. We learned by doing and made a vast number of mistakes, some of
which still live to haunt us. What characterised programmers then was an eagerness
to do and learn something new. We had to be sociable because we had to learn from
our peers. We also had to be capable of locking ourselves into a room with a
computer for hours and hours – there may have been nobody to teach us what we
needed to know. Managers should be aware of the dynamics of their team and select
staff accordingly to produce a balanced team.

Many projects in the embedded arena were done by engineers who had learnt
programming as an adjunct to their main job. Many of them took on more than they
could chew, and management are now justly cautious of letting a non-specialist have
their head.

Many current Forth programmers also come from an electronics or scientific
background. Forth’s good reputation in embedded systems is largely a result of how
it grew, rather than in any truth about what it is good for.

Nowadays, programming for many people is just a job. It also covers a huge range of
applications. Putting a Java programmer onto a hard real-time application happens,
but it is a risk.

Like much other engineering and professional practice, software is as much a craft as
anything else. Experience counts for a lot. Even more valuable is learning from that
experience.

Training
When people start using Forth, there is a learning curve. Because Forth is a different
type of language compared with the ones they have probably used before, the
learning curve converting from C/C++ to Forth is larger than that in converting from
C/C++ to Delphi. A typical Forth training course needs from three to five days,
mostly depending on how good the programmers are and how much time they have
available. The commercial vendors can provide standard or tailored courses.

After such a course, it will take a month or so to become comfortable in Forth. After
that productivity rises. The important point of a course is to do enough coding in
Forth so that they “get it”. A programmer used to C who does not “get” Forth will
probably write Forth in a C style and will show little or no productivity gains in the
areas where Forth could otherwise show major gains. Exposure to other Forth
programmers helps here. An interested programmer will learn much faster than
someone who has just been sent on the course. Consequently, motivation on the
benefits of Forth is an essential part of courses.

Adopting and managing Forth

173

The costs of training are often raised as an issue, especially for newly hired
programmers. Learning a programming language takes much less time than learning
the business of a company. Over the lifetime of a project, the cost of training (like the
cost of the software tools) is all but lost in the noise.

Portability
Since the introduction of ANS Forth, the portability of code has improved
considerably. However, just as in any other language, porting code between different
Forth systems requires attention to detail. After being involved with several large
ports of up to 800,000 lines of Forth source code, the key issues are separation and
management.

Separation involves deciding which code can be changed and which code cannot.
During the early stages of the project you will want to run the new system alongside
the old. This involves splitting the code into several layers.

1) Application – this code is left unchanged

2) Tools – you leave this code unchanged if at all possible, but depending on the
underlying kernels, some change may be required. Careful use of conditional
compilation helps here, but too much use of it leads to maintenance issues.

3) Harnesses – provide one for each Forth system you are using. The job of the
harness layer is to translate from the underlying Forth kernel so that the tool and
application layers require (ideally) no change. When you decide to abandon the
earlier kernel, only then should you permit further changes to the tool and
application layers.

4) Forth kernel – leave it alone! If you need it to be modified consult the supplier.
It is a major problem if the kernel you use is not the one that your supplier is
shipping. If you must have changes, make sure that the supplier is prepared to
take over maintenance of the changes.

The management issues in porting are ensuring that you do one thing at a time and
ensuring people do not get too enthusiastic. Making a major feature enhancement
during a port is a recipe for disaster. Doing the port and then doing the feature
enhancement will be quicker. Porting puts the team manager as a barrier between the
differing objectives of the software development team and the sales and marketing
group.

Lifecycle
Successful software products evolve, so change is a constant of their lives. Changing
software means that someone has to back and revisit code written several years ago.
Code must be documented to cope with this. An in-house style greatly eases the
problems of code maintenance.

Be prepared for the issues involved in porting your code. Hardware platforms do not
last for ever, and neither do operating systems. The product you are developing may
have a commercial life well beyond that of the hardware and software platforms you
are currently using.

Some of the products I am currently maintaining started life under CP/M, were
ported to 16 bit DOS, 32 bit DOS, Windows 3.1 and then to the Windows NT based
operating systems. The code involved has evolved over a period of nearly 25 years
and is still working. It has outlived changes in CPU, operating system, and host Forth
system.

Adopting and managing Forth

174

175

22 Legacy issues

As with any programming language, Forth has evolved over time. This chapter
discusses some of the legacy issues.

Forth Standards
Four Forth standards have been significant: FIG-Forth, Forth-79, Forth-83 and ANS
Forth. ANS Forth is the current standard. FIG-Forth and Forth-79 are unlikely to be
encountered, so this section deals with converting code from Forth-83 to ANS Forth.
Because the ANS standard very deliberately avoids specifying implementation
technique, there has been an explosion in Forth compiler technology since the
introduction of the ANS standard in 1994. This section also discusses the impact of
converting from a threaded code implementation to a modern optimising code
generator such as MPE’s VFX systems.

Native Code Compilers
Carnal knowledge is dangerous

Extra care should be exercised with any source code which requires knowledge of
the underlying architecture. This will particularly impact definitions which cause
compilation, and assembler fragments.

Comma does not Compile

Many Forth-83 implementations allowed compilation by "comma-ing" a CFA into
the dictionary. This is no longer a valid method of generating code. The ANS word
COMPILE, should be used instead. Also the system must be in "compile state" when
COMPILE, is used.

Converting from Forth-83
MPEism: COMPILE is now IMMEDIATE

Previous MPE implementations have used a non-immediate version of COMPILE
which has "unpicked" the following CALL instruction at run-time. This behaviour
has now been changed. Most uses of COMPILE and [COMPILE] can be replaced by
POSTPONE.

COLON and Current

Under ANS Forth, the CONTEXT definitions wordlist (the used when looking up
word names) is not modified by : (colon). The impact of this change is that you do
not need to add an extra ALSO to protect the search order. Also note that : (colon) is
no longer immediate in most implementations, which may affect some compile-time
error checking.

ANS Error Handling

Error handling is done using the ANS specified CATCH and THROW mechanism. The
definitions ERROR and ?ERROR from Forth-83 are now aliases for THROW and
?THROW. Please read the section on exception handling both in this manual and the
ANS Forth Standard.

Legacy issues

176

Screen files
A screen (also called a block) is a unit of Forth source code that consists of 16 lines of
64 characters. The reasons for this unit are almost lost in the depths of computing
history, but stem from using a size that fitted efficiently onto a drum store, and also
fitted onto current screen sizes (most people used mechanical teletypes as terminals).
This convention has been retained, partly by convention, and partly because it helps to
enforce writing code in small chunks.

MPEism: The description in the remainder of this section is specific to MPE products.

If you still need to maintain screen files, MPE’s Forth Starter Kit includes PC
PowerForth Plus and Modular Forth. These provide a specialised screen file editor
called FRED, which is the editor you get by typing EDIT or FRED. You can see what
is in a screen file by using a Forth convention. According to this convention the top
line of every screen (a unit of source code) is used only as a comment line describing
the contents of a screen.

The word INDEX can then be used to display all these comment lines. The phrase:

 0 100 INDEX

will index the comment lines of screens 0 to 100.

You can then see what is in screen 23 by typing:

TOOLS (loads module TOOLS.MD3)
23 LIST (lists screen 23)

Notice how the word TOOLS is used to load the module TOOLS.MD3 that contains
many handy utilities. The word N will show you the Next screen, and the word P will
show you the Previous screen. Screens are organised as 16 lines of 64 characters, and
are edited using the full screen editor. When you find a screen you want to compile
(say screen 7), you can compile it using the word LOAD:

 7 LOAD

Screen 7 will be compiled. If screen 7 contains words that load other screens, they too
will be compiled.

Files
If a screen file was specified when Forth was loaded, it will be opened as Forth signs
on. To change to another file, use:

 USING NEW.SCR

If the file NEW.SCR does not exist the system will ask you if you want the file created,
and if so, the file will be created and opened. The screen file is used by all the words
affecting source code, and when you type EDIT or FRED, the editor is loaded and acts
on the current screen file. After the word EDIT screen 0 is edited, or if the editor has
been used before, the screen last edited is edited again.

 EDIT (edits screen 0 or last screen)
25 FRED (edits screen 25)

177

23 Other Books and Resources

I learned Forth by using it, talking to other people and by reading everything about it
that I could lay my hands on and afford. As with every new subject, I found that I
needed more than one book, and often I needed different books at different stages in
my learning. I cannot pretend that this book is the only one you will need, so here are
some of them that I have found useful.

The first two books are by Leo Brodie and are classics.

Starting Forth – Leo Brodie
Sadly out of print, but if you find a copy, especially of the second edition, buy it. A
web version by Marcel Hendrix is described as a tribute to this great book and is
available at:

http://home.iae.nl/users/mhx/

Thinking Forth – Leo Brodie
A PDF of this wonderful book is available from:

http://thinking-forth.sourceforge.net/

The following is taken from the description there.

Thinking Forth is a book about the philosophy of problem solving and programming
style, applied to the unique programming language Forth. Published first in 1984, it
could be among the timeless classics of computer books, such as Fred Brooks' The
Mythical Man-Month and Donald Knuth's The Art of Computer Programming.

Many software engineering principles discussed here have been rediscovered in
eXtreme Programming, including (re)factoring, modularity, bottom-up and
incremental design. Here you'll find all of those and more - such as the value of
analysis and design - described in Leo Brodie's down-to-earth, humorous style, with
illustrations, code examples, practical real life applications, illustrative cartoons,
and interviews with Forth's inventor, Charles H. Moore as well as other Forth
thinkers.

If you program in Forth, this is a must-read book. If you don't, the fundamental
concepts are universal: Thinking Forth is meant for anyone interested in writing
software to solve problems. The concepts go beyond Forth, but the simple beauty of
Forth throws those concepts into stark relief.

So flip open the book, and read all about the philosophy of Forth, analysis,
decomposition, problem solving, style and conventions, factoring, handling data, and
minimizing control structures. But be prepared: you may not be able to put it down.

Forth Programmer’s Handbook – Conklin & Rather
A second level book well regarded by many.

http://www.forth.com/forth/fph.html

http://home.iae.nl/users/mhx/
http://thinking-forth.sourceforge.net/
http://www.forth.com/forth/fph.html

Other Books and Resources

178

Forth Application Techniques – Rather
“From first-day Forth exercises to advanced techniques many programmers never
learn on their own, this course notebook is filled with pithy, succinct discussion and
exercises developed and refined over the years to quickly teach, test, and reinforce
Forth language skills.”

http://www.forth.com/forth/fat.html

Other Resources

Forth Interest Group
The Forth Interest Group web site at:

http://www.forth.org

contains links to a huge amount of information about Forth. It also has a repository of
compilers, source code and documentation which you may well find useful. You can
also find links to local support groups in several countries.

Usenet news groups
comp.lang.forth
comp.lang.forth.mac

Conferences
Many of the smaller Forth conferences have been superseded by the news groups.
The annual EuroForth conference is the best of the current conferences. It is linked at

http://www.forth.org

and is held in nice places around Europe. Several smaller conferences are held in
Silicon Valley, Holland and Germany.

Amazon
The online bookseller has a searchable section under Programming:Languages:Forth

http://www.forth.com/forth/fat.html
http://www.forth.org
http://www.forth.org

179

24 Index

-, 20
!, 23
#, 32
#>, 32
#S, 32
*, 20
*/, 21
,, 47
.R, 44
.S, 9
/, 20
:, 15
;, 15
?DO, 26, 27
?DUP, 19
?LEAVE, 26
?OF, 29
@, 22
[COMPILE], 70, 73, 175
+, 20
+!, 23
+LOOP, 26
<, 21
<#, 32
<=, 22
<>, 22
=, 21
>, 21
>=, 22
>BODY, 111
>NAME, 111
>R, 20
0<>, 22
0=, 22
2>R, 20
2DROP, 20
2DUP, 20
2OVER, 20
2R@, 20
2R>, 20
2SWAP, 20
ABORT, 30, 75, 79
ABORT”, 75, 79
ABS, 21
ACCEPT, 31, 42

ADDR, 89
AGAIN, 27
ALIGN, 95
ALIGNED, 95
ALLOT, 48, 95
ALSO, 34
ARM, 116
assembler, 91
ASSEMBLER, 97
BASE, 85
BEGIN, 27
Bernd Paysan, 8
BIN, 81
BLOCK, 105
blocks', 104
BODY>, 111
books, 177
bottom-up design, 5
brackets, 9
BUFFER, 105
C!, 23
C,, 48, 95
C@, 23
CASE, 28
CATCH, 75
CDATA, 95
CELL, 9
CELLS, 23
CHARS, 23
children, 13
CLOSE-FILE, 81
CLS, 41
CODE, 91
Code layout, 127
comment, 13
Comments, 135
COMPILE,, 69
compiled code, 111
compiler, 4, 10
COMPILER, 97
conferences, 178
configuration, 119
CONSTANT, 23
Constants, 23
control structure, 24

Index

180

COUNT, 41, 42
CR, 15, 41
CREATE, 31, 47, 110
CREATE-FILE, 81
Date Validation, 37
debugging, 3
defining words, 4, 47
Defining words, 97, 136
DEFINITIONS, 33
DELETE-FILE, 82
Determinism, 117
Diary, 51
dictionary, 4
Dictionary, 109
DIGIT, 44
DO, 26
DOES>, 48
DP, 162
DPL, 33
DROP, 19
DTC, 112
DUP, 19
editors, 128
ELSE, 25
Embedded Systems, 95
EMIT, 41
EMPTY-BUFFERS, 105
ENDCASE, 28
END-CASE, 29
ENDIF, 25
ENDOF, 28
exception handling, 75
EXECUTE, 63, 69
Execution Tokens, 63
Exercises, 141
EXIT, 25
Factoring, 11
FILE-POSITION, 82
Files, 81
FILE-SIZE, 82
FIND, 35, 111
FLOAD, 83
float stack, 88
floating point, 87
FLUSH, 105
FLUSH-FILE, 82
Formatting, 32
Forth Scientific Library, 88

Forth virtual machine, 7
glossary, 4
Harvard architecture, 96
HERE, 48, 95
HOLD, 32
HOST, 97
HOST&TARGET, 98
I/O redirection, 45
IDATA, 95
IF, 25
IMMEDIATE, 67
Immediate words, 67
INCLUDE, 83
INCLUDED, 82
INCLUDE-FILE, 82
Indenting, 137
INIT-MULTI, 86
Interlocks, 103
internationalisation, 30
interpreter, 4, 10, 119
INTERPRETER, 97
interrupt response time, 116
interrupts, 102
INVERT, 22
ITC, 113
IX1, 115
Java, 114
KEY, 41, 86
KEY?, 41
KISS method, 17
Koopman, 115
LEAVE, 26
legacy, 175
LITERAL, 69, 70
local arrays, 89
local variables, 88

avoiding, 90
performance, 89
when to use, 90
writing C in Forth, 89

Local variables, 88
LOCATE, 91
LOOP, 26
LSHIFT, 22
management, 167
MAX, 21
MicroCore, 115
MIN, 21

Index

181

Mixed language
programming, 91
MOD, 20
Moore

Chuck, 2
Multitasking, 85
NAME>, 111
NC4000, 115
NCC, 111
NEGATE, 21
NEXT-CASE, 29
NIP, 19
notation, 13
Novix, 115
NUMBER?, 44
Object oriented
programming, 90
OF, 28
ONLY, 34
OPEN-FILE, 81
OR, 22
ORDER, 34
OVER, 19
PAD, 31
PAGE, 41
Parameter stack, 109
phone book, 123
Phone Book, 55
phrasing, 135
Poets, 5
postfix, 8
POSTPONE, 70
QUERY, 31
QUIT, 30, 75
R/O, 81
R@, 20
R>, 20
Rather

Elizabeth, 2
READ-FILE, 81
READ-LINE, 82
REPEAT, 28
REPOSITION-FILE, 82
RESIZE-FILE, 82
Return st, 109
ROT, 19
-ROT, 19
RSHIFT, 22
RTX2000, 115, 116

SAVE-BUFFERS, 105
SEARCH-WORDLIST, 35,
111
Solutions, 153
SOURCE, 43
stack

comments, 13
stack fault, 87
stack machines, 114
Stacks, 8
standards, 175
STATE, 70
STC, 112
string

character, 31
counted, 31

strings, 30
strins

counted, 30
Structures, 49, 70
SWAP, 19
tabs, 128
TARGET, 97
TARGET-ONLY, 98
tethered, 106
Text, 30
THROW, 75
TIB, 31
TO, 89
TTC, 113
TUCK, 19
TYPE, 31, 32, 41
U<, 21
U>, 21
UDATA, 95
UM*, 21
UM/MOD, 21
Umbilical, 106
UNLOOP, 26
UNTIL, 27
UNUSED, 95
UPDATE, 105
USER, 85
User variables, 109
USER variables, 85
value, 24
VALUE, 23
VARIABLE, 23

Index

182

variables, 23, 24
Vectors, 63
VHDL, 115
virtual machine

C, 7
Forth, 7
SENDIT, 7

Vocabularies, 33
vocabulary, 4
VOCABULARY, 33
VOCS, 34
W!, 23
W@, 23
WHILE, 28

WITHIN, 22, 38
WITHIN?, 38
WORD, 31, 43
wordlists, 33
Wordlists, 34
words, 4

defining, 10
immediate, 10

WORDS, 17, 33
WRITE-FILE, 81
WRITE-LINE, 81
XCALL, 92
XOR, 22

