
amforth 4.9 Reference Card
Arithmetics
1- (n1 – n2)

optimized decrement

1+ (n1|u1 – n2|u2)
optimized increment

2/ (n1 – n2)
arithmetic shift right

2* (n1 – n2)
arithmetic shift left, filling with zero

abs (n1 – u1)
get the absolute value

>< (n1 – n2)
exchange the bytes of the TOS

cell+ (a-addr1 – a-addr2)
add the size of an address-unit to a-
addr1

cells (n1 – n2)
n2 is the size in address units of n1
cells

d2/ (d1 – d2)
shift a double cell value right

d2* (d1 – d2)
shift a double cell left

dabs (d – ud)
double cell absolute value

dinvert (d1 – d2)
invert all bits in the double cell value

d- (d1 d2 – d3)
subtract d2 from d1

dnegate (d1 – d2)
double cell negation

d+ (d1 d2 – d3)
add 2 double cell values

invert (n1 – n2)
1-complement of TOS

log2 (n1 – n2)
logarithm to base 2 or highest set bit-
number

lshift (n1 n2 – n3)
logically shift n1 left n2 times

- (n1|u1 n2|u2 – n3|u3)
subtract n2 from n1

mod (n1 n2 – n3)
divide n1 by n2 giving the remainder
n3

m* (n1 n2 – d)
multiply 2 cells to a double cell

+ (n1 n2 – n3)
add n1 and n2

+! (n a-addr –)
add n to content of RAM address a-
addr

rshift (n1 n2 – n3)
shift n1 n2-times logically right

/ (n1 n2 – n3)
divide n1 by n2. giving the quotient

/mod (n1 n2 – rem quot)
signed division n1/n2 with remainder
and quotient

* (n1 n2 – n3)
multiply routine

*/ (n1 n2 n3 – n4)
signed multiply and division with dou-
ble precision intermediate

*/mod (n1 n2 n3 – rem quot)
signed multiply n1 * n2 and division
with n3 with double precision inter-
mediate and remainder

true (– -1)
leaves the value -1 (true) on TOS

ud/mod (d1 n – rem ud2)
unsigned double cell division with re-
mainder

um/mod (ud u2 – rem quot)
unsigned division ud / u2 with re-
mainder

um* (u1 u2 – d)
multiply 2 unsigned cells to a double
cell

u/mod (u1 u2 – rem quot)
unsigned division with remainder

0 (– 0)
place a value 0 on TOS

Character IO
bl (– 32)

put ascii code of the blank to the stack

cr (–)
cause subsequent output appear at
the beginning of the next line

emit (c –)
fetch the emit vector and execute it.
should emit a character from TOS

emit? (– f)
fetch emit? vector and execute it.
should return the ready-to-send con-
dition

key (– c)
fetch key vector and execute it, should
leave a single character on TOS

key? (– f)
fetch key? vector and execute it.
should turn on key sender, if it is di-
sabled/stopped

space (–)
emits a space (bl)

spaces (n –)
emits n space(s) (bl)

type (addr n –)
print a RAM based string

Compare
d= (n1 n2 – flag)

compares two double cell values

d> (d1 d2 – flag)
compares two double cell values (si-
gned)

d< (d1 d2 – flag)
checks whether d1 is less than d2

= (n1 n2 – flag)
compares two values for equality

0= (n – flag)
compare with 0 (zero)

> (n1 n2 – flag)
flag is true if n1 is greater than n2

0> (n1 – flag)
true if n1 is greater than 0

0< (n1 – flag)
compare with zero

max (n1 n2 – n1|n2)
compare two values, leave the bigger
one

min (n1 n2 – n1|n2)
compare two values leave the smaller
one

<> (n1 n2 – flag)
true if n1 is not equal to n2

1

0<> (n – flag)
true if n is not zero

u> (u1 u2 – flag)
true if u1 > u2 (unsigned)

u>= (u1 u2 – flag)
compare two unsigned numbers, re-
turns true flag if u1 is greater then or
equal to u2

u< (u1 u2 – flasg)
true if u1 < u2 (unsigned)

u<= (u1 u2 – flag)
compare two unsigned numbers, re-
turns true flag if u1 is less then or
equal to u2

within (n min max – f)
check if n is within min..max

Compiler
2literal (– x1 x2)

(C: x1 x2 –)
compile a cell pair literal in colon de-
finitions

again (–)
(C: dest –)
compile a jump back to dest

\ ("ccc<eol>-)
everything up to the end of the cur-
rent line is a comment

begin (–)
(C: – dest)
put the next location for a transfer of
control onto the control flow stack

[’] (– xt)
(C: «space>name-)
what ’ does in the interpreter mode,
do in colon definitions

code (–)
(C: cchar –)
create named entry in the dictionary,
XT is the data field

: (–)
(C: «spaces>name-)
create a named entry in the dictiona-
ry, XT is DO-COLON

:noname (– xt)
create an unnamed entry in the dic-
tionary, XT is DO-COLON

constant (– x)
(C: x «spaces>name-)
create a constant in the dictionary

do (n1 n2 –)
(R: – loop-sys)
(C: – do-sys)
start do .. [+]loop

(create) (–)
(C: «spaces>name- voc-link)
parse the input and create an vocabu-
lary entry without XT and data field
(PF)

does> (i*x – j*y)
(R: nest-sys1 –)
(C: colon-sys1 – colon-sys2)
replace the runtime semantics

." (–)
(C: "ccc<quote>-)
compiles string into dictionary to be
printed at runtime

Edefer (c<name> –)
creates a defer vector which is kept in
eeprom.

else (C: orig1 – orig2)
(C: orig1 – orig2)
resolve the forward reference and
place a new unresolved forward refe-
rence

end-code (–)
finish a code definition

exit (–)
(R: nest-sys –)
end of current colon word

header (addr len wid – voc-link)
creates the vocabulary header without
XT and data field (PF) in the wordlist
wid

i (– n)
(R: loop-sys – loop-sys)
current loop counter

if (f –)
(C: – orig)
start conditional branch

immediate (–)
set immediate flag for the most recent
word definition

j (– n)
(R: loop-sys1 loop-sys2 –
loop-sys1 loop-sys2)
loop counter of outer loop

[(–)
enter interpreter mode

leave (–)
(R: loop-sys –)
immediatly leave the current
DO..LOOP

literal (– n)
(C: n –)
compile a literal in colon defintions

loop (R: loop-sys –)
(R: loop-sys –)
(C: do-sys –)
compile (loop) and resolve the back-
ward branch

(("ccc<paren>-)
skip everything up to the closing
bracket on the same line

+loop (n –)
(R: loop-sys – loop-sys|)
(C: do-sys –)
compile (+loop) and resolve branches

?do (n1|u1 n2|u2 –)
(C: – do-sys)
start a ?do .. [+]loop control structure

] (–)
enter compiler mode

Rdefer (c<name> –)
creates a RAM based defer vector

recurse (–)
compile the XT of the word currently
being defined into the dictionary

repeat (–)
(C: orig dest –)
continue execution at dest, resolve
orig

s, (addr len –)
compiles a string from RAM to Flash

; (–)
finish colon defintion, compiles (exit)
and returns to interpret state

s" (– addr len)
(C: <cchar> –)
compiles a string to flash, at runtime
leaves (– flash-addr count) on stack

then (–)
(C: orig –)
finish if

unloop (–)
(R: loop-sys –)
remove loop-sys, exit the loop and
continue execution after it

until (f –)
(C: dest –)
finish begin with conditional branch,
leaves the loop if true flag at runtime

2

user (n cchar –)
create a dictionary entry for a user va-
riable at offset n

value (n <name> –)
create a dictionary entry for a value
and allocate 1 cell in EEPROM.

variable (cchar –)
create a dictionary entry for a variable
and allocate 1 cell RAM

while (f –)
(C: dest – orig dest)
at runtime skip until repeat if non-
true

Conversion
d>s (d1 – n1)

shrink double cell value to single cell.

s>d (n1 – d1)
extend (signed) single cell value to
double cell

Dictionary
(n –)

compile 16 bit into flash at DP

compile (–)
read the following cell from the dic-
tionary and append it to the current
dictionary position.

create (– a-addr)
(C: «spaces>name-)
create a dictionary header. XT is (con-
stant), with the address of the data
field of name

’ («spaces>name- XT)
search dictionary for name, returns
XT or throw an exception -13

Environment
/hold (– hldsize)

size of the pictured numeric output
buffer in bytes

/pad (– padsize)
Size of the PAD buffer in bytes

/user (– usersize)
size of the USER area in bytes

wordlists (– n)
maximum number of wordlists in the
dictionary search order

cpu (– faddr len)
flash address of the CPU identificati-
on string

forth-name (– faddr len)
flash address of the amforth name
string

version (– n)
version number of amforth

mcu-info (– faddr len)
flash address of some CPU specific pa-
rameters

Exceptions
abort (i*x –)

(R: j*y –)
send an exception -1

abort" (i*x x1 – | i*x)
(R: j*y – | j*y)
(C: "ccc<quote>-)
check flag. If true display the parsed
text and throw exception -2

catch (i*x xt – j*x 0 | i*x n)
execute XT and check for exceptions.

handler (– a-addr)
USER variable used by catch/throw

throw (n –)
throw an exception

Extended VM
a@ (– n2)

Read memory pointed to by register
A (Extended VM)

a@- (– n)
Read memory pointed to by register
A, decrement A by 1 cell (Extended
VM)

a@+ (– n)
Read memory pointed to by register
A, increment A by 1 cell (Extended
VM)

a! (n –)
Write memory pointed to by register
A (Extended VM)

a!- (– n2)
Write memory pointed to by register
A, decrement A by 1 cell (Extended
VM)

a!+ (– n2)
Write memory pointed to by register
A, increment A by 1 cell (Extended
VM)

a> (n1 – n2)
read the A register (Extended VM)

b@ (– n2)
Read memory pointed to by register
B (Extended VM)

b@- (– n)
Read memory pointed to by register
B, decrement B by 1 cell (Extended
VM)

b@+ (– n)
Read memory pointed to by register
B, increment B by 1 cell (Extended
VM)

b! (n –)
Write memory pointed to by register
B (Extended VM)

b!- (– n2)
Write memory pointed to by register
B, decrement B by 1 cell (Extended
VM)

b!+ (– n2)
Write memory pointed to by register
B, increment B by 1 cell (Extended
VM)

b> (n1 – n2)
read the B register (Extended VM)

na@ (n1 – n2)
Read memory pointed to by register
A plus offset (Extended VM)

na! (n offs –)
Write memory pointed to by register
A plus offset (Extended VM)

nb@ (n1 – n2)
Read memory pointed to by register
B plus offset (Extended VM)

nb! (n offs –)
Write memory pointed to by register
B plus offset (Extended VM)

>a (n –)
Write to A register (Extended VM)

>b (n –)
Write to B register (Extended VM)

Interpreter
get-recognizer (– recn .. rec0 n)

Get the current recognizer list

rec-find (addr len – f)
recognizer searching the dictionary

rec-intnum (addr len – f)
recognizer for integer numbers

rec-notfound (addr len –)
recognizer for NOT FOUND

set-recognizer (recn .. rec0 n –)
replace the recognizer list

3

Interrupt
int@ (i – xt)

fetches XT from interrupt vector i

-int (– sreg)
turns off all interrupts and leaves
SREG in TOS

+int (–)
turns on all interrupts

int! (xt i –)
stores XT as interrupt vector i

int-trap (i –)
trigger an interrupt

#int (– n)
number of interrupt vectors (0 based)

Logic
and (n1 n2 – n3)

bitwise and

negate (n1 – n2)
2-complement

not (flag – flag’)
identical to 0=

or (n1 n2 – n3)
logical or

xor (n1 n2 – n3)
exclusive or

MCU
!@spi (n1 – n2)

SPI exchange of 2 bytes, high byte
first

baud (– v)
returns usart baudrate settings

bm-clear (bitmask byte-addr –)
clear bits set in bitmask on byte at
addr

bm-set (bitmask byte-addr –)
set bits from bitmask on byte at addr

bm-toggle (bitmask byte-addr –)
toggle bits set in bitmask on byte at
addr

-jtag (–)
disable jtag at runtime

-wdt (–)
disable watch dog timer at runtime

rx?-isr (– f)
check if unread characters are in the
input queue using interrupt driver

rx?-poll (– f)
check if a character can be appended
to output queue using register poll

rx-isr (– c)
get 1 character from input queue, wait
if needed using interrupt driver

rx-poll (c –)
wait for one character and read it from
the terminal connection using register
poll

sleep (mode –)
put the controller into the specified
sleep mode

c!@spi (txbyte – rxbyte)
SPI exchange of 1 byte

>usart (–)
initialize the user area to use the sys-
tem terminal for IO

tx?-isr (– f)
check if a character can be appended
to output queue.

tx?-poll (– f)
check if a character can be send using
register poll

tx-isr (c –)
put 1 character into output queue,
wait if needed, enable UDRIE inter-
rupt

tx-poll (c –)
check availability and send one cha-
racter to the terminal using register
poll

+usart (–)
initialize usart

+usartx (–)
initialize the atxmega usart (ATXme-
ga)

wdr (–)
calls the MCU watch dog reset in-
struction

x-rx?-poll (– f)
check if a character can read from the
terminal (Poll, ATXmega)

x-rx-poll (– c)
wait for and get one character from
the terminal (Poll, ATXmega)

x-tx?-poll (– f)
check if a character can be sent (Poll,
ATXmega)

x-tx-poll (c –)
wait for the terminal becomes ready
and put 1 character to it (Poll, ATX-
mega)

Memory
c@ (a-addr - c1)

fetch a single byte from memory map-
ped locations

cmove (addr-from addr-to n –)
copy data in RAM, from lower to hig-
her addresses

cmove> (addr-from addr-to n –)
copy data in RAM from higher to
lower addresses.

c! (c a-addr –)
store a single byte to RAM address

(!i-nrww) (n f-addr –)
writes n to flash memory using assem-
bly code (code to be placed in boot
loader section)

(!i-nvm) (n f-addr –)
writes n to flash at f-addr using NVM
(ATXmega)

@ (a-addr – n)
read 1 cell from RAM address

@e (e-addr - n)
read 1 cell from eeprom

@e (e-addr - n)
read 1 cell from eeprom using NVM
(ATXmega)

@i (f-addr – n1)
read 1 cell from flash

@u (a-addr – n)
read 1 cell from RAM address

fill (a-addr u c –)
fill u bytes memory beginning at a-
addr with character c

! (n addr –)
write n to RAM memory at addr, low
byte first

!e (n e-addr –)
write n (2bytes) to eeprom address

!e (n e-addr –)
write n (2bytes) to eeprom address
using nvm (atxmega)

4

!i (n addr –)
Deferred action to write a single 16bit
cell to flash

!u (n addr –)
write n to RAM memory at addr, low
byte first

Multitasking
pause (–)

Fetch pause vector and execute it.
may make a context/task switch

Numeric IO
base (– a-addr)

location of the cell containing the
number conversion radix

bin (–)
set base for number conversion to 2

d. (d –)
singed PNO with double cell numbers

d.r (d w –)
singed PNO with double cell numbers,
right aligned in width w

decimal (–)
set base for numeric conversion to 10

digit? (c – (number|)
tries to convert a character to a num-
ber, set flag accordingly

. (n –)
singed PNO with single cell numbers

.r (n w –)
singed PNO with single cell numbers,
right aligned in width w

hex (–)
set base for number conversion to 16

hld (– addr)
pointer to current write position in the
Pictured Numeric Output buffer

hold (c –)
prepend character to pictured nume-
ric output buffer

<# (–)
initialize the pictured numeric output
conversion process

number (addr len – [n|d size] f)
convert a counted string at addr to a
number

(d1 – d2)
pictured numeric output: convert one
digit

#> (d1 – addr count)
Pictured Numeric Output: convert
PNO buffer into an string

#s (d – 0)
pictured numeric output: convert all
digits until 0 (zero) is reached

sign (n –)
place a - in HLD if n is negative

>number (ud1 c-addr1 u1 – ud2
c-addr2 u2)
convert a string to a number c-
addr2/u2 is the unconverted string

ud. (ud –)
unsigned PNO with double cell num-
bers

ud.r (ud w –)
unsigned PNO with double cell num-
bers, right aligned in width w

u. (u –)
unsigned PNO with single cell num-
bers

u.r (u w –)
unsigned PNO with single cells num-
bers, right aligned in width w

u0.r (ud n –)
Print n digits, fill in preceeding zeros
if needed

Search Order
also (–)

Duplicate first entry in the current
search order list

definitions (–)
Make the compilation word list the sa-
me as the current first word list in the
search order.

forth (–)
replace the search order list with the
system default list

forth-wordlist (– wid)
get the system default word list

get-current (– wid)
get the wid of the current compilation
word list

get-order (– widn .. wid0 n)
Get the current search order word list

only (–)
replace the order list with the system
default list

order (–)
print the wids of the current word list
and the search order

previous (–)
remove the first entry in the search or-
der list

search-wordlist (c-addr len wid – [
0] | [xt [-1|1]])
searches the word list wid for the
word at c-addr/len

set-current (wid –)
set current word list to the given word
list wid

set-order (widn .. wid0 n –)
replace the search order list

wordlist (– wid)
create a new, empty wordlist

Stack
2r> (– x1 x2)

(R: x1 x2 –)
move DTOR to TOS

2swap (x1 x2 x3 x4 – x3 x4 x1 x2
)
Exchange the two top cell pairs

2>r (x1 x2 –)
(R: – x1 x2)
move DTOS to TOR

depth (– n)
number of single-cell values contained
in the data stack before n was placed
on the stack.

drop (n –)
drop TOS

dup (n – n n)
duplicate TOS

nip (n1 n2 – n2)
Remove Second of Stack

nr> (xn .. x0 n –)
(R: – xn .. x0 n)
move n items from data stack to re-
turn stack

n>r (xn .. x0 n –)
(R: – xn .. x0 n)
move n items from data stack to re-
turn stack

over (x1 x2 – x1 x2 x1)
Place a copy of x1 on top of the stack

5

pick (xu ... x1 x0 u – xu ... x1
x0 xu)
access the stack as an array and fetch
the u-th element as new TOS

?dup (n1 – [n1 n1] | 0)
duplicate TOS if non-zero

rot (n1 n2 n3 – n2 n3 n1)
rotate the three top level cells

rp0 (– addr)
start address of return stack

rp@ (– n)
current return stack pointer address

rp! (addr –)
(R: – x*y)
set return stack pointer

r@ (– n)
(R: n – n)
fetch content of TOR

r> (– n)
(R: n –)
move TOR to TOS

sp (– addr)
address of user variable to store top-
of-stack for inactive tasks

sp0 (– addr)
start address of the data stack

sp@ (– addr)
current data stack pointer

sp! (addr – i*x)
set data stack pointer to addr

swap (n1 n2 – n2 n1)
swaps the two top level stack cells

>r (n –)
(R: – n)
move TOS to TOR

String
compare (r-addr r-len f-addr

f-len – f)
compares two strings in RAM

count (c-addr1 – c-addr2 len)
convert addr of counted string to ad-
dress of the first characater and length
of the string

cscan (addr1 n1 c – addr1 n2)
Scan string at addr1/n1 for the first
occurance of c, leaving addr1/n2, char
at n2 is first non-c character

cskip (addr1 n1 c – addr2 n2)
skips leading occurancies in string at
addr1/n1 leaving addr2/n2 pointing
to the 1st non-c character

parse (char "ccc<char>- c-addr u)
in input buffer parse ccc delimited
string by the delimiter char.

parse-name («name>- c-addr u)
In the SOURCE buffer parse white-
space delimited string. Returns string
address within SOURCE.

place (addr1 len1 addr2 –)
copy string as counted string

/string (addr1 u1 n – addr2 u2)
adjust string from addr1 to addr1+n,
reduce length from u1 to u2 by n

sliteral (C: addr len –)
(C: addr len –)
compiles a string to flash, at runtime
leaves (– flash-addr count) on stack

tolower (C – c)
if C is an uppercase letter convert it
to lowercase

toupper (c – C)
if c is a lowercase letter convert it to
uppercase

System
accept (addr +n1 – +n2)

receive a string of at most n1 charac-
ters at addr until n2 characters are re-
veived or cr/lf detected.

allot (n –)
allocate or release memory in RAM

cold (–)
start up amforth.

defer@ (xt1 – xt2)
returns the XT associated with the gi-
ven XT

defer! (xt1 xt2 –)
stores xt1 as the xt to be executed
when xt2 is called

execute (xt –)
execute XT

f_cpu (– d)
put the cpu frequency in Hz on stack

interpret (–)
(R: i*x - j*x)
interpret input word by word.

is (xt1 c<char> –)
stores xt into defer or compiles code
to do so at runtime

quit (–)
main loop of amforth. accept - inter-
pret in an endless loop

refill (– f)
refills the input buffer

refill-tib (– f)
refills the input buffer

source (– addr n)
address and current length of the in-
put buffer

source-tib (– addr n)
address and current length of the in-
put buffer

warm (nx* –)
(R: ny* –)
initialize amforth further. executes
turnkey operation and go to quit

System Value
dp (– f-addr)

address of the next free dictionary cell

edp (– e-addr)
address of the next free address in ee-
prom

ee-user (– v)
address of the default user area con-
tent in eeprom

here (– addr)
address of the next free data space
(RAM) cell

turnkey (– n*y)
Deferred action during startup/reset

System Variable
environment (– wid)

word list identifier of the environmen-
tal search list

>in (– a-addr)
pointer to current read position in in-
put buffer

latest (– addr)
system LATEST

#tib (– addr)
variable holding the number of charac-
ters in TIB

6

pad (– a-addr)
Address of the temporary scratch buf-
fer.

state (– addr)
system state

tib (– addr)
terminal input buffer address

up@ (– addr)
get user area pointer

up! (addr –)
set user area pointer

Time
1ms (–)

busy waits (almost) exactly 1 millise-
cond

ms (n –)
busy waits the specified amount of
milliseconds

Tools
[char] (– c)

(C: «space>name-)
skip leading space delimites, place the
first character of the word on the stack

[compile] (– c)
(C: «space>name-)
skip leading space delimites, place the
first COMPILEacter of the word on
the stack

char («spaces>name- c)
copy the first character of the next
word onto the stack

.s (–)
stack dump

ee>ram (e-addr r-addr len –)
copy len cells from eeprom to ram

@e[] (ee-addr – itemn .. item0 n)
Get an array from EEPROM

find (addr – addr 0 | xt -1 | xt 1
)

search wordlists for entry taken as
counted string from addr

find-name (addr len – 0 | xt -1 |
xt 1)
search wordlists for the name from
string addr/len

icompare (r-addr r-len f-addr
f-len – f)
compares string in RAM with string
in flash

icount (addr – addr+1 n)
get count information out of a counted
string in flash

init-user (–)
setup the default user area from ee-
prom

itype (addr n –)
reads string from flash and prints it

noop (–)
do nothing

?stack (–)
check stack underflow, throw excepti-
on -4

show-wordlist (wid –)
prints the name of the words in a
wordlist

!e[] (recn .. rec0 n ee-addr –)
Write a list to EEPROM

to (n <name> –)
store the TOS to the named value (ee-
prom cell)

unused (– n)
Amount of available RAM (incl. PAD)

ver (–)
print the version string

word (c – addr)
skip leading delimiter character and
parse SOURCE until the next delimi-
ter. copy the word to HERE

words (–)
prints a list of all (visible) words in
the dictionary

7

