
amforth 4.8

Technical Documentation

Matthias Trute

amforth 4.8Technical Documentation
by Matthias Trute

Published 2011
Copyright © 2007, 2012 Matthias Trute

Table of Contents
Overview..vi

1. First Steps...1

1.1. User Interface..1

2. Hardware..2

2.1. Controller..2
2.2. Bootloader Support...2
2.3. Fuses..2

3. Source Organisation..3

3.1. Overview...3
3.2. Core system...4

3.2.1. Dictionary files...4
3.2.2. Device Settings...5

3.3. Application Code..5

4. Architecture..6

4.1. Overview...6
4.2. CPU -- Forth VM Mapping...6
4.3. Core System..7

4.3.1. Threading Model..7
4.3.2. Inner Interpreter..7
4.3.3. Interpreter...8
4.3.4. Stacks..10
4.3.5. Interrupts...10
4.3.6. Multitasking..12
4.3.7. Exception Handling..12
4.3.8. User Area..12
4.3.9. Word Lists and Environment Queries...13

4.4. Memory Layout...13
4.4.1. Flash...14
4.4.2. EEPROM..16
4.4.3. RAM...16

5. Implementation..19

5.1. ANS Words...19
5.1.1. Core and Core EXT..19
5.1.2. Block...19
5.1.3. Double Number..19
5.1.4. Exception..19
5.1.5. Facility..20
5.1.6. File Access..20
5.1.7. Floating Point...20
5.1.8. Locals...20
5.1.9. Memory Allocation..20
5.1.10. Programming Tools..20
5.1.11. Word Lists and Search Order..21
5.1.12. Strings...21

iii

5.2. Amforth...22
5.2.1. COLD...22
5.2.2. MCU Access...22
5.2.3. Assembler...23
5.2.4. Memory..23
5.2.5. Input Output..23
5.2.6. Strings...24

6. Library ..25

6.1. Hardware Access...25
6.2. Software Modules...25

6.2.1. Multitasking..25
6.2.2. TWI / I2C...26
6.2.3. I2C EEPROM...27

7. Tools..28

7.1. Host...28
7.1.1. Partdescription Converter...28
7.1.2. Documentation...28
7.1.3. Uploader...28

8. Roadmap...30

8.1. More ANS94 Words..30
8.2. More Controller Types..30
8.3. Support..30
8.4. Contributors...30

iv

List of Tables
3-1. Source Filenames...3
4-1. Register Mapping...6
4-2. Extended Forth VM Register Mapping..6
4-3. USER Area...12

v

Overview

Amforth is a Forth system for the AVR ATmega microcontrollerfamily. It works on the controller itself
and does not depend on any additional hard- or software. It places no restrictions on using external
hardware.

Amforth implements a large subset of the Forth standard ANS94. Most of the CORE and CORE EXT
words and a varying number of words from the other word sets are implemented. It is very easy to extend
or shrink the actual word list for a specific application by just editing the dictionary include files.

The dictionary is located in the flash memory. The built-in compiler extends it directly.

amforth provides full access to all interrupts. The interrupt handler routines can be code or forth words.

Amforth is published under the GNU General Public License version 2.

The name amforth has no special meaning.

Amforth is a new implementation. The first code was written inthe summer of 2006. It is written "from
scratch" using assembly language and forth itself. It does not have a direct relationship to any other forth
system.

vi

Chapter 1. First Steps

The first steps require an ATmega microcontroller with an RS232 connection to an PC or a terminal like
the VT100 or similar hardware. A customization may change these requirements.

1.1. User Interface

amforth has a simple user interface. Connect your system to aserial terminal (or a PC) and you get the
forth prompt>

> cold
amforth 4.4 ATmega16 8000 kHz
> words
nr> n>r (i!) !i @i @e !e nip not s>d up! up@ ...
>

1

Chapter 2. Hardware

2.1. Controller

amforth is designed to run on AVR Atmega microcontrollers. It requires ca 7KB flash memory for the
basic system and can address 128KB of flash memory.

The ATtiny microcontrollers and a a few ATmega types lack theminimum flash capacity. The ATtiny’s
some machine instructions as well.

2.2. Bootloader Support

Most bootloaders will not work with amforth since they do notprovide an application programming
interface to rewrite a single flash cell. The default setup will thus replace any bootloader found with
some core routines.

It is possible to change the word!i to use an API and work with existing bootloaders.!i is a deferred
word that can be re-targetted to more advanced words that maydo address range checkings, write
success checks or simply turn on/off LEDs to visualize the flash programming.

2.3. Fuses

Amforth uses the self programming feature of the ATmega microcontrollers to work with the dictionary.
It is ok to use the factory default settings plus the changes for the oscillator settings. It is recommended
to use a higher CPU frequency to meet the timing requirementsof the serial terminal.

Fuses are the main cause for problems with the flash write operations. If the!i operation fails, make sure
that the code for it is within the boot loader section. It is recommended to make the bootloader section as
large as the NRWW section, otherwise the basic machine instruction spm may fail silently and the
controller becomes unresponsive.

2

Chapter 3. Source Organisation

3.1. Overview

amforth is written using the standard Atmel AVR 8 bit assembly language. That does not mean that every
word is actually written in assembly language however. Mostof the words are written in forth itself, but
are precompiled into the assembler syntax. This solves the chicken-and-egg problem: how to compile the
compiler words.

The source code can be processed with both the AVR Studio and the linux avr assembler avra.

amforth consists of a great number of small source files. Nearly all words are coded in their own source
files. These files are organized with include files, named after the patterndict*.inc.

The include hierarchy is as follows: Top level is the application specific file (template.asm). It included
the file (core/)amforth.asm only. This file includes the two (appl/) filesdict_appl.inc for the low
address words (RWW space) and the filedict_appl_core.inc for the high address space words
(NRWW). These two include files use otherdict* files and direct words defintion files. Any
cross-references are solved by the assembler. The user needs to take care that the highest used address is
within the flash address range, an assembler error message isgenerated in that case.

Currently the following pre defined dict files exist:

Table 3-1. Source Filenames

Filename purpose placement

dict_minimum.inc All basic words beyond the
primitives.

Usually included via
dict_appl.inc and placed in the
RWW section. If possible put it
into the NRWW section however.

dict_mcu.inc Microcontroller specific
primitives.

It can be placed everywhere.
Usually in dict_appl_core.inc.

dict_core.inc All essential primitives. Always near the inner interpreter
(NRWW, dict_appl_core.inc).

dict_compiler All Compiler words. Usually part of the dict_appl.inc.

dict_usart Usart Terminal IO words Usually part of the dict_appl.inc.

dict_vm Not-Yet proposed additional VM
registers A and B

Usually part of the dict_appl.inc.

dict_wl words dealing with word lists. Usually part of the dict_appl.inc

The order in which the files are included defines the search order and there location within the flash

3

Chapter 3. Source Organisation

memory. Most words can be moved from one include file to another to optimize the flash usage.

There are additional files:amforth.asm andmacros.asm . The first one is the master file and the only
one the application needs to include. The filemacros.asm contains some useful assembler macros that
make the source code easier to read.user.inc contains the layout of the system user area.

3.2. Core system

The fileamforth.asm is the core of amforth. Here is the startup code for the microcontroller, and the
forth inner interpreter with the interrupt service routine. It includes the dictionary files.

3.2.1. Dictionary files

The dictionary files have two tasks: First they include the word definition files. Second, they determine
each word’s location in the resulting flash layout.

There are a few words left out from the dictionary lists. These words are either not always needed or are
some variants of existing words or simply cannot be includedin the core system due to size limitations in
the NRWW section with smaller atmegas. They are usually included by the application specific include
file(s).

3.2.1.1. dict_core.inc

The filedict_core.inc contains all words for the NRWW flash section, Since the wordI! cannot write
to this address range, no new words can be compiled to this section at runtime. Thus it is advisable to
include as many words as possible indict_core.inc if the amount of writable dictionary space is an
issue. As a helper the filedict_appl_core.inc can be used to place application specifiic words in the
core area.

3.2.1.2. dict_minimum.inc

A useful forth system needs in addition to the above at least the filedict_minimum.inc, which
includes the forth interpreter words.

3.2.1.3. dict_compiler.inc

An almost complete forth system with a compiler gives the third include file:dict_compiler.inc.

4

Chapter 3. Source Organisation

3.2.1.4. dict_appl.inc and dict_appl_core.inc

Some words have their source files within thecore/words directory but have to be included via the
dict_appl.inc or dict_appl_core.inc files. These words may provide the hardware dependecies
to access the amforth system. The serial line terminal is an example.

3.2.2. Device Settings

Every Atmega has its own specific settings. They are based on the official include files provided by
Atmel and define the important settings for the serial IO port(which port and which parameters), the
interrupt vectors and some macros.

Adapting another ATmega microcontroller is as easy as copy and edit an existing file from a similiar type.

The last definition is a string with the device name in clear text. This string is used within the wordVER .

3.3. Application Code

Every build of amforth needs an application. There are a few sample applications, which can be used
either directly (AVR Butterfly) or serve as a source for inspiration (template application).

The structure is basically always the same. First the filemacros.asm has to be included. After that some
definitions need to done: The size of the Forth buffers, the CPU frequency, initial terminal settings etc.
Then the device specific part needs to be included and as the last step the amforth core is included.

For a comfortable development cycle the use of a build utility such asmakeor ant is recommended. The
assembler needs a few settings and the proper order of the include directories.

5

Chapter 4. Architecture

4.1. Overview

amforth is a 16 bit Forth implementing the indirect threading model. The flash memory contains the
whole dictionary. A few EEPROM cells are used to hold initialvalues and the dictionary pointers. The
RAM contains buffers, variables and the stacks.

The compiler is a classic compiler without any optimizationsupport.

amforth uses all of the CPU registers to hold vital data: The data stack pointer, the instruction pointer, the
user pointer, and the Top-Of-Stack cell. The hardware stackis used as the return stack. Some registers
are used for temporary data in primitives.

4.2. CPU -- Forth VM Mapping

The Forth VM has a few registers that need to be mapped to the microcontroller registers. The mapping
has been extended over time and may cover all available registers. The actual coverage depends on the
amount of additional packages. The default settings are shown in the tableRegister Mapping.

Table 4-1. Register Mapping

Forth Register ATmega Register(s)

W: Working Register R22:R23

IP: Instruction Pointer XH:XL (R27:R26)

RSP: Return Stack Pointer SPH:SPL

PSP: Parameter Stack Pointer YH:YL (R29:R28)

UP: User Pointer R4:R5

TOS: Top Of Stack R24:R25

X: temporary (scratch pad) register ZH:ZL (R31:R30)

Table 4-2. Extended Forth VM Register Mapping

Forth Register ATmega Register(s)

A: Index and Scratch Register R6:R7

B: Index and Scratch Register R8:R9

6

Chapter 4. Architecture

In addition the register pair R0:R1 is used internally e.g. to hold the the result of multiply operations. The
register pair R2:R3 is used as the zero value in many words. These registers must never be changed.

The registers from R10 to R13 are currently unused, but may beused for the VM extended registers X
and Y sometimes. The registers R14 to R21 are used as temporary registers and can be used freely within
one module as temp0 to temp7.

The forth core uses theT Flag in the machine status register SREG for signalling an interrupt. Any other
code must not change that bit.

4.3. Core System

4.3.1. Threading Model

amforth implements the classic indirect threaded variant of forth.

4.3.2. Inner Interpreter

For the indirect threading model an inner interpreter is needed. The inner interpreter does the interrupt
handling too.

4.3.2.1. EXECUTE

This operation reads the cell the IP currently points to and uses the value read as the destination of a
branch. This EXECUTE is not the forth word EXECUTE. The forthEXECUTE sets the IP from the data
stack TOS element.

4.3.2.2. NEXT

The NEXT routine is the core of the inner interpreter. It consists of 4 steps which are executed for every
forth word.

The first step in NEXT is to check whether an interrupt needs tobe handled. It is done by looking at the
T flag in the machine status register. If it is set, the code jumps to the interrupt handling part. If the flag is
cleared the following normal NEXT routine runs.

The next step is to read the cell the IP points to and stores this value in the W register. For a COLON
word W contains the address of the code field.

7

Chapter 4. Architecture

The 3rd step is to increase the IP register by 1.

The 4th step is to read the content of the cell the W register points to. The value is stored in the scratch
pad register X. The data in X is the address of the machine codeto be executed in the last step.

This last step finally jumps to the machine code pointed to by the X scratch pad register.

4.3.2.3. DO COLON

DO COLON (aka NEST) first pushes the IP (which points to the next word to be executed when the
current word is done) to the return stack. It then incrementsW by one flash cell, so that it points to the
body of the (colon) word, and sets IP to point to that value. Then it continues with NEXT, which begins
executing the words in the body of the (parent) colon word.

4.3.2.4. EXIT

The code for EXIT (aka UNNEST) is the forth wordEXIT in the dictionary. It reads the IP from the
return stack and jumps to NEXT. The return stack pointer is incremented by 2 (1 flash cell).

4.3.2.5. DO_DOES

This code is the runtime part of the forth wordDOES> . It pushes the current address of the MCU IP
register onto the returnstack and jumps to DO_DOES. DO_DOESgets that address back, saves the
current IP and sets the forth IP to the address it got from the stack. Finally it continues with NEXT.

4.3.3. Interpreter

The interpreter is a line based command interpreter. It based uponREFILL to aquire the next line of
characters, located at a positionSOURCE points to. While processing the line, the pointer>IN is
adjusted accordingly. Both wordsREFILL andSOURCEare USER based deferred words which allows
to use any input source on a thread specific level. The interpreter itself does not use any static buffers or
variables (>IN is a USER variable as well).

A given string is handled byINTERPRET which splits it into whitespace delimited words. Every word
is processed using a list of recognizers. Processing ends either when the string end is reached or an
exception occures.

8

Chapter 4. Architecture

4.3.3.1. SOURCE and REFILL

SOURCE provides an addr/len string pair that does not change duringprocessing. The task of REFILL
is to fill the string buffer, SOURCE will point to when finished.

There is one default input source: The terminal input buffer. This buffer gets filled with REFILL-TIB that
reads from the serial input buffers (KEY). SOURCE points to the Terminal Input Buffer itself. Another
input source are plain strings, used by EVALUATE.

4.3.3.2. Recognizer

A recognizer gets the word address (API is not yet finalized) of the current word. If the word can be
processed, the recognizer is responsible to do so. A word from the dictionary has to be either executed or
compiled, a number as well. A recognizer must not change the word buffer content. Finally the
recognizer returns a flag to the interpreter which signals success or not. This flag is consumed, any other
stack change is kept.

Three recognizers are defined: Dictionary lookuprec-find, integer number conversionrec-intnum and a
not-found dummyrec-notfound. The first two take care of the interpreter state and either leave more
than the flag (e.g. the number entered) or compile the information to the dictionary.

The not-found recognizer prints the word and throws an exception -13 which can be catched.

The list of the recognizers is kept in the EEPROM, the maximumsize of the entries is a compile time
setting (currently 6 slot are available).

4.3.3.2.1. Example Recognizer

A recognizer gets the address of a counted word in memory and leaves at least the flag for the interpreter.
If any data is to be left on the stack (e.g. numeric values) it has to be beneath the flag.

The small example illustrates the integration of the floating point library for amforth. It is based upon a
conversion word >float which takes a string and tries to convert it into a float. The word fliteral compiles
a floating point number into the dictionary.

: rec-float \ addr -- (f|) -1 | 0
count >float
if state @ if postpone fliteral then -1 else 0
then ;

The recognozer first tries to convert the string to a number. If that failes, the flag from the >float is
essentially duplicated and the recognizer is left. If the conversion succeeded, the floating point number is

9

Chapter 4. Architecture

on the data stack. The recognizer now checks whether the number needs to be compiled or not. In any
case the success flag is returned.

Future versions may change the API from counted strings at addr to addr/len information.

4.3.4. Stacks

4.3.4.1. Data Stack

The data stack uses the CPU register pair YH:YL as its data pointer. The Top-Of-Stack element (TOS) is
in a register pair. Compared to a straight forward implementation this approach saves code space and
gives higher execution speed (approx 10-20%). Saving even more stack elements does not really provide
a greater benefit (much more code and only little speed enhancements).

The data stack starts at a configurable distance below the return stack (RAMEND) and grows downward.

4.3.4.2. Return Stack

The Return Stack is the hardware stack of the controller. It is managed with push/pop assembler
instructions. The default return stack starts at RAMEND undgrows downward.

4.3.5. Interrupts

Amforth routes the low level interrupts into the forth innerinterpreter. The inner interpreter switches the
execution to a predefined word if an interrupt occurs. When that word finishes execution, the interrupted
word is continued. The interrupt handlers are completly normal forth colon words without any stack
effect.

4.3.5.1. Example Interrupt Handling

The example illustrates the basic usage of interrupts. The code implements a very basic timer
functionality.

We use the timer/counter 0 to generate an interrupt any time the overflow condition is triggered. It is a
8bit counter, the input is the internal oscillator using a prescaler of 1024. The overflow value is set to
256. This gives an interrupt rate of frequency/(1024*256).At 8Mhz this will be 32 interrupts per second.

10

Chapter 4. Architecture

variable tick

\ this code is executed as an interrupt
: timer-int-isr

1 tick +!
;

: timer-init
5 TCCR0 c! \ prescaler 1024, check data sheet
[’] timer-int-isr TIMER0_OVFAddr int!
0 tick !

;

\ turn on the timer, needs timer-init already in place
: +timer
1 TIMSK c!

;

\ stops the timer
: -timer
0 TIMSK c!

;

To ease debugging the code, the word int-trap can be used. This word simulates the interrupt in any
respect but a real hardware cause. To test the routine from above enter the command

> TIMER0_OVFAddr int-trap tick @ .

, it should increment tick by 1

4.3.5.2. Implementation Details

The processing of interrupts takes place in two steps: The first one is the low level part. It is called
whenever an interrupt occurs. The code is the same for all interrupts. It takes the number of the interrupt
from its vector address and stores this in a RAM cell. Then thelow level ISR sets theT flag in the status
register of the controller and returns with RET.

The second step is taken from the inner interpreter. It checks the T-flag every time it is entered and, if it is
set, it switches to interrupt handling at forth level. This approach has a penalty of 1 CPU cycle for
checking and skipping the branch instruction to the isr forth code if no interrupt occured.

If an interrupt is detected, the forth VM clears the T-flag andcontinues with the wordISR-EXEC. This
word reads the currently active interrupt number and calls the assoicated execution token. When this

11

Chapter 4. Architecture

word is finished, the wordISR-END is called. This word clears the interrupt flag for the controller
(RETI).

This interrupt processing has two advantages: There are no lost interrupts (the controller itself disables
interrupts within interrupts and re-transmits newly discovered interrupts afterwards) and it is possible to
use standard forth words to deal with any kind of interrupts.

Interrupts from some hardware sources (e.g. the usart) needto be cleared from the Interrupt Service
Routine. If this is not done within the ISR, the interrupt is re-triggered immediatly after the ISR returned
control.

The downside is a relativly long latency since the the forth VM has to be synchronized with the interrupt
handling code in order to use normal colon words as ISR. This peanalty is usually small since only words
in assembly can cause the delay.

4.3.6. Multitasking

amforth does not implement multitasking directly. It only provides the basic functions. Within IO words
the deferred wordPAUSE is called whenever possible. This word is initialized to do nothing (NOOP).

4.3.7. Exception Handling

amforth implements theCATCH andTHROW exception handling. The outermost catch frame is
located at the interpreter level in the wordQUIT . If an exception with the value -1 or -2 is thrown,
QUIT will print a message and re-start itself. Other values silently restartQUIT .

4.3.8. User Area

The User Area is a special RAM storage area. It contains the USER variables and the User deferred
definitions. Access is based upon the value of the user pointer UP. It can be changed with the wordUP!
and read withUP@ . The UP itself is stored in a register pair.

The size of the user area is determinded by the size the systemitself uses plus a configurable number at
compile time. For self defined tasks this user supplied number can be changed for task local variables.

The first USER area is located at the first data address (usually RAMSTART).

Table 4-3. USER Area

12

Chapter 4. Architecture

Addressoffset (bytes) Purpose

0 Multitasker Status

2 Multitasker Follower

4 RP0

6 SP0

8 SP (m

10 HANDLER (exception handling)

12 BASE (number conversion)

14 EMIT (character IO)

16 EMIT? (character IO)

18 KEY (character IO)

20 KEY? (character IO)

22 REFILL (deferred)

24 SOURCE (deferred)

The User Area is used to provide task local information. Without an active multitasker it contains the
starting values for the stackpointers, the deferred words for terminal IO, the BASE variable and the
exception handler.

The multitasker uses the first 2 cells to store the status and the link to the next entry in the task list. In
that situation the user area is/can be seen as the task control block.

Beginning with release 3.7 the USER area has been split into two parts. The first one called system user
area contains all the variabled described above. The secondone is the application user area that contains
all variabled defined with the USER command. The default application user area is empty and by default
of size zero.

4.3.9. Word Lists and Environment Queries

Wordlists and environment queries are implemented using the same structure. They are based upon the
simple linked list built withcreate. The wordlist identifier is a EEPROM address that holds the starting
point address for the wordlist search.

Environment queries are normal colon words. They are calledwithin environment?and leave there
results at the data stack.

find uses an array of wordlist identifiers to search for the word. This list can be accessed withget-order
as well.

13

Chapter 4. Architecture

4.4. Memory Layout

4.4.1. Flash

The flash memory is divided into 4 sections. The first section,starting at address 0, contains the interrupt
vector table for the low level interrupt handling and a character string with the name of the controller in
plain text.

The 2nd section contains the low level interrupt handling routines. The interrupt handler is very closely
tied to the inner interpreter. It is located near the first section to use the faster relative jump instructions.

The 3rd section is the first part of the dictionary. Nearly allcolon words are located here. New words are
appended to this section. This section is filled with FFFF cells when flashing the controller initially. The
current write pointer is theDPpointer.

The last section is identical to the boot loader section of the ATmegas. It is also known as the NRWW
area. Here is the heart of amforth: The inner interpreter andmost of the words coded in assembly
language.

Figure 4-1. FLASH Structure Overview

Interrupt Vectors

Startup code

Inner Interpreter

Free Flash

0x00

DP

amforth_start (NRWW_START)

Dictionary
dict_appl.inc
(pre-compiled colons)

FLASH_END

Dictionary
dict_appl_core.inc
(primitives)

The reason for this split is a technical one: to work with a dictionary in flash the controller needs to write
to the flash. The ATmega architecture provides a mechanism called self-programming by using a special

14

Chapter 4. Architecture

instruction and a rather complex algorithm. This instruction only works in the boot loader/NRWW
section. amforth uses this instruction in the word I!. Due tothe fact that the self programming is a lot
more then only a simple instruction, amforth needs most of the forth core system to achieve it. A side
effect is that amforth cannot co-exist with classic bootloaders. If a particular boot loader provides an API
to enable applications to call the flash write operation, amforth can be restructured to use it. Currently
only very few and seldom used bootloaders exist that enable this feature.

Atmegas can have more than 64 KB Flash. This requires more than a 16 bit address, which is more than
the cell size. For one type of those bigger atmegas there willbe an solution with 16 bit cell size:
Atmega128 Controllers. They can use the whole address rangewith an interpretation trick: The flash
addresses are in fact not byte addresses but word addresses.Since amforth does not deal with bytes but
cells it is possible to use the whole address range with a 16 bit cell. The Atmegas with 128 KBytes Flash
operate slightly slower since the address interpretation needs more code to access the flash (both read
and write). The source code uses assembly macros to hide the differences.

An alternative approach to place the elements in the flash shows picture . Here all code goes into the
RWW section. This layout definitly needs a routine in the NRWW section that provides a cell level flash
write functionality. The usual bootloaders do not have suchan runtime accessible API, only the DFU
bootloader from atmel found on some USB enabled controllersdoes.

Figure 4-2. Alternative FLASH Structure

Interrupt Vectors

Startup code

Inner Interpreter

Free Flash

0x00

DP

Dictionary
dict_appl.inc

Dictionary
dict_appl_core.inc

FLASH_END

0x1FFFF

NRWW

unused flash

Bootsector with API

The unused flash area beyond 0x1FFFF is not directly accessible for amforth. It could be used as a block
device.

15

Chapter 4. Architecture

4.4.1.1. Flash Write

The word performing the actual flash write operation isI! (i-store). This word takes the value and the
address of a single cell to be written to flash from the data stack. The address is a word address, not a
byte address!

The flash write strategy follows Atmel’s appnotes. The first step is turning off all interrupts. Then the
affected flash page is read into the flash page buffer. While doing the copying a check is performed
whether a flash erase cycle is needed. The flash erase can be avoided if no bit is turned from 0 to 1. Only
if a bit is switched from 0 to 1 must a flash page erase operationbe done. In the fourth step the new flash
data is written and the flash is set back to normal operation and the interrupt flag is restored. The whole
process takes a few milliseconds.

This write strategy ensures that the flash has minimal flash erase cycles while extending the dictionary. In
addition it keeps the forth system simple since it does not need to deal with page sizes or RAM based
buffers for dictionary operations.

4.4.2. EEPROM

The built-in EEPROM contains vital dictionary pointer and other persistent data. They need only a few
EEPROM cells. The remaining space is available for user programs. The easiest way to use EEPROM is
the use of forth VALUEs. There intended design pattern (readoften, write seldom) is like that for the
typical EEPROM usage.

Another use for EEPROM cells is to hold execution tokens. Thedefault system uses this for the turnkey
vector. This is an EEPROM variable that reads and executes the XT at runtime. It is based on the
DEFER/IS standard. To define a deferred word in the EEPROM usethe Edefer defintion word. The
standard word IS is used to put a new XT into it.

Low level space management is done through the the EDP variable. This is not a forth value but a
EEPROM based variable. To read the current value an@eoperation must be used, changes are written
back with!e . It contains the highest EEPROM address currently allocated. The name is based on the DP
variable, which points to the highest dictionary address.

4.4.3. RAM

The RAM address space is divided into three sections: the first 32 addresses are the CPU registers.
Above come the IO registers and extended IO registers and finally the RAM itself.

16

Chapter 4. Architecture

amforth needs very little RAM space for its internal data structures. The biggest part are the buffers for
the terminal IO. In general RAM is managed with the wordsVARIABLE andALLOT .

Forth defines a few transient buffer regions for varios purposes. The most important is PAD, the scratch
buffer. It is located 100 bytes above the current HERE and goes to upper addresses. The Pictured
Numeric Output is just at PAD and grows downward. The word WORD uses the area above HERE as it’s
buffer to store the just recognized word from SOURCE.

Figure 4-3shows an ram layout that can be used on systems without external RAM. All elements are
located within the internal memory pool.

Figure 4-3. RAM Structure Overview

0..0x1f Register

0x20..0x5f IO Register

0x60 .. RAMSTART
IO Register

RAMSTART

ISR Vectors

1st User Area

Terminal Input Buffer

Data Stack

Return Stack
RAMEND

XRAM follows

stackstart

rstackstart

HLD
PAD

allocated memory

HERE+offset (Runtime)

HERE

Another layout, that makes the external RAM easily available is shown inFigure 4-4. Here are the stacks
at the beginning of the internal RAM and the data space region. All other buffers grow directly into the
external data space. From an application point of view thereis not difference but a speed penalty when
working with external RAM instead of internal.

17

Chapter 4. Architecture

Figure 4-4. RAM Structure Overview

0..0x1f Register

0x20..0x5f IO Register

0x60 .. RAMSTART
IO Register

RAM_START

Forth ISR Vectors

1st User Area

Terminal Input Buffer

HLD
PAD

Data Stack

Return Stack

stackstart

rstackstart, internal RAM END

HERE (Runtime)

XRAM Start

Allocated Memory

HERE (initial)

With amforth all three sections can be accessed using their RAM addresses. That makes it quite easy to
work with words likeC@ . The word! implements a LSB byte order: The lower part of the cell is stored
at the lower address.

For the RAM there is the wordRdefer which defines a deferred word, placed in RAM. As a special case
there is the wordUdefer , which sets up a deferred word in the user area. To put an XT into them the
word IS is used. This word is smart enough to distinguish between thevarious Xdefer definitions.

18

Chapter 5. Implementation

5.1. ANS Words

amforth is close to the ANS94 Forth standard. The main difference comes from the fact that the AVR
ATmegas use a Havard architecture (separate code and data address space) that amforth does not hide.
amforth gives full and unmodified access to the whole addressspace.

amforth implements most or all words from the ANS word sets CORE, CORE EXT, EXCEPTION and
DOUBLE NUMBERS. A loadable floating point library that contains the basic routines is avaliable.
Words from the word sets LOCALS and FILE-ACCESS are dropped completly. The others are partially
implemented.

5.1.1. Core and Core EXT

Al words from the CORE word set are available. CORE EXT drops the words C", COMPILE,
CONVERT, EXPECT, SPAN, and ROLL.

The following words have non-standard behavior

Loop counters are checked on signed compares.

5.1.2. Block

amforth has limited block support with I2C/TWI serial eepromchips with 2 byte addresses.

5.1.3. Double Number

Double cell numbers work as expected. Not all words are implemented. Entering them directly using the
dot- notation work for dots at the end of the number, not if thedot is somewhere within it.

5.1.4. Exception

Exceptions are fully supported. The wordsABORT andABORT" use them internally.

TheTHROW codes -1, -2 and -13 work as specified.

19

Chapter 5. Implementation

The implementation is based upon a variable HANDLER which holds the current return stack pointer
position. This variable is a USER variable.

5.1.5. Facility

The basic system uses theKEY? andEMIT? words as deferred words in the USER area.

The wordMS is implemented with the word1MS which busy waits almost exactly 1 millisecond. The
calculation is based upon the frequency specified at compiletime.

The wordsTIME&DATE , EKEY , EKEY>CHAR are not implemented.

To control a VT100 terminal the wordsAT-XY andPAGE are written in forth code. They emit the ANSI
control codes according to the VT100 terminal codes.

5.1.6. File Access

amforth does not have filesystem support. It does not containany words from this word set.

5.1.7. Floating Point

amforth has a loadable floating point library. It contains the basic words to deal with single precision
floats. The floats are managed on the standard data stack. After loading the library floats can be entered
directly at the command prompt. Some speed senstive words are available as assembly code as well.

5.1.8. Locals

amforth does not currently support locals.

5.1.9. Memory Allocation

amforth does not support the words from the memory allocation word set.

20

Chapter 5. Implementation

5.1.10. Programming Tools

Variants of the words.S , ? andDUMP are implemented or can easily be done. The wordSEE won’t be
supported since amforth uses a optimization strategy to strip forth headers whenever possible. The other
reason for droppingSEE is that amforth is OpenSource software. If your vendor does not disclose the
full source, let me know. He violates the GPL. Nevertheless awordXT2NFA exists that leads to the
name field.

STATE works as specified.

The wordWORDS does not sort the word list and does not take care of screen sizes.

The words;CODE andASSEMBLER are not supported. amforth has a loadable assembler which can
be used with the wordsCODE andEND-CODE .

The control stack commandsCS-ROLL , CS-PICK andAHEAD are not implemented. The compiler
words operate with the more traditionalMARK / RESOLVE word pairs.

FORGET is not implemented since it would be nearly impossible to reset the search order word list with
reasonable efforts. The better way is usingMARKER from the library.

An EDITOR is not implemented.

[IF] , [ELSE] and[THEN] are not implemented.

5.1.11. Word Lists and Search Order

Amforth supports the ANS Search Order Wordlist. A word list consist of a linked list of words in the
dictionary. There are no limits on the number of word lists defined. Only the length of the active search
order is limied: There can be up to 8 entries at any given moment. This limit can be changed at compile
time in the application definition file.

Internally the wordlist identifier is the address where the wordlist start address is stored in the EEPROM.
Creating a new word list means to allocate a new EEPROM cell. Since the ANS standard does not give
named wordlist there is library code available that uses theold fashioned vocabulary.

5.1.12. Strings

SLITERAL , CMOVE> , CMOVE , COMPARE> , and/STRING are implemented.

21

Chapter 5. Implementation

-TRAILING , BLANK , andSEARCH are not implemented.

5.2. Amforth

5.2.1. COLD

The startup code is in the filecold.asm. It gets called directly from the address 0 vector.

This assembly part of the startup code creates the basic runtime environment to start the virtual forth
machine. It sets up the stack pointers and the user pointer and places the forth instruction pointer on the
wordWARM. Then it boots the forth virtual machine by jumping to the inner interpreter.

The start addresses of the stacks are placed to the user area for later use as well.

5.2.1.1. WARM

The wordWARM is the high level part of the forth VM initialization. When called from within forth it is
the equivalent to a RESET.WARM initializes thePAUSEdeferred word to do nothing, calls the
application definedTURNKEY action and finally hands over toQUIT.

5.2.1.2. TURNKEY

Theturnkeyis a EEPROM deferred word that points to an application specific startup word.

Its main task is to initialize the character IO to enable the forth interpreter to interact with the command
prompt. The examples shipped with amforth do this by "opening" the serial port, switching to decimal
number conversion and setting up the character IO deferred words (KEY, EMIT etc).

5.2.1.3. QUIT

QUIT repeats the initialization of the stack pointers by reading them from the user area and enters the
traditional ACCEPT -- INTERPRET loop that never ends.

22

Chapter 5. Implementation

5.2.2. MCU Access

amforth provides wrapper words for the microcontroller instructionsSLEEP andWDR (watch dog
reset). To work properly, the MCU needs more configuration. amforth itself does not call these words.

Microcontrollers supporting the JTAG interface can be programmed to turn off JTAG at runtime. Similiar
the watch dog timer can be disabled. Since both actions require strict timing they need to be
implemented as primitives:-JTAG and-WDT .

5.2.3. Assembler

Lubos Pekny has written an assembler for amforth. To supportit, amforth provides the two wordsCODE
andEND-CODE. The first creates a dictionary entry and sets the code field tothe data filed address. The
interpreter will thus jump directly into the data field assuming some machine code there. The word
END-CODEplaces aJUMP NEXTinto the data field. This finishes the machine instruction execution
and jumps back to the forth interpreter.

5.2.4. Memory

Atmega microcontroller have three different types of memory. RAM, EEPROM and Flash. The words@
and! work on the RAM address space (which includes IO Ports and theCPU register), the words@eand
!e operate on the EEPROM and@i and!i deal with the flash memory. All these words transfer one cell
(2 bytes) between the memory and the data stack. The address is always the native address of the target
storage: byte-based for EEPROM and RAM, word-based for flash. Therefore the flash addresses
64KWords or 128 KBytes address space.

External RAM shares the normal RAM address space after initialization (which can be done in the
turnkey action). It is accessible without further changes.

For RAM only there is the special word pairc@ / c! which operate with the lower half of a stack cell.
The upper byte is either ignored or set to 0 (zero).

All other types of external memory need special handling, which may be masked with the block word set.

5.2.5. Input Output

amforth uses character terminal IO. A serial console is used. All IO is based upon the standard words
EMIT / EMIT? andKEY / KEY? . Additionally the word/KEY is used to signal the sender to stop. All
these words are deferred words in the USER area and can be changed with theIS command.

23

Chapter 5. Implementation

The predefined words use an interrupt driven IO with a buffer for input and output. They do not
implement a handshake procedure (XON/XOFF or CTS/RTS). Thedefault terminal device is selected at
compile time.

These basic words include a call to thePAUSEcommand to enable the use of multitasking.

Other IO depend on the hardware connected to the microcontroller. Code exists to use LCD and TV
devices. CAN, USB or I2C are possible as well. Another use of the redirect feature is the following:
consider some input data in external EEPROM (or SD-Cards). To read it, the wordsKEY andKEY? can
be redirected to fetch the data from them.

5.2.6. Strings

Strings can be stored in two areas: RAM and FLASH. It is not possible to distinguish between the
storage areas based on the addresses found on the data stack,it’s up to the developer to keep track.

Strings are stored as counted strings with a 16 bit counter value (1 flash cell) Strings in flash are
compressed: two consecutive characters (bytes) are placedinto one flash cell. The standard wordS"
copies the string from the RAM into flash using the wordS, .

24

Chapter 6. Library

Amforth does not have a formal library concept. Amforth has alot of forth code that can be seen as a
library of words and commands.

6.1. Hardware Access

In thedevice/ subdirectory are the controller specific register definitions. They are taken directly from
the appnotes from Atmel. The register names are all uppercase. It is recommended to extract only the
needed definitions since the whole list occupy a lot of flash memory.

Some commonly used lowlevel words can be included with thedict_mcu.inc include file at compile
time.

6.2. Software Modules

6.2.1. Multitasking

The Library contains a cooperative multitasker in the filemultitask.frt . It defines a command
multitaskpausewhich can assigned topause: ’ multitaskpause is pause

The multitasker has the following commands

onlytask (--)

Initialize the task system. The current task is placed as theonly task in the task list.

alsotask (tid --)

Append a newly created task to the task list. A running multitasker is temporarily stopped. Make
sure that the status of the task is sleep.

25

Chapter 6. Library

task (dstacksize rstacksize -- tid)

Allocate RAM for the task control block (aka user area) and the two stacks. Initializes the whole
user area to direct IO to the serial line. The task has still nocode associated and is not inserted to the
task list.

task-sleep (tid --)

Let the (other) task sleep. The task switcher skips the task on the next round. When a task executes
this command for itself, the task continues until the next call of pause.

task-awake (tid --)

The task is put into runnable mode. It is not activated immediately.

activate (tid --)

Skip all of the remaining code in the current colon word and continue the skipped code as task when
the task list entry is reached by the multitasker.

It is possible to use a timer interrupt to call the commandpauseand turn the cooperative multitasker into
a preemptive one. The latency is in the worst case that of the longest running uninterruptable forth
commands:1ms , !i and!i . For a preemptive task switcher a lot more tools like semaphores may be
needed.

6.2.2. TWI / I2C

The filetwi.frt contains the basic words to operate with the hardware TWI module of the
microcontroller. The filetwi-eeprom.frt uses these words to implement a native block buffer access
for I2C EEPROMs with 2byte addresses.

The word+twi initializes the TWI hardware module with the supplied parameters.-twi turns the module
off. The start-stop conditions are sent with thetwi.start andtwi.stop words. Data is transferred with the
three wordstwi.tx for transmitting (sending) a byte,twi.rx for reading a byte (and sending an ACK
signal) andtwi.rxn for reading a byte and sending a NACK signal.

26

Chapter 6. Library

The commandtwi.status fetches the TWI status register, the commandtwi.status?compares the status
with a predefined value and throws the exception -14 if they donot match.

The commandtwi.scanscans the whole (7 bit) address range and prints the address of any device found.

6.2.3. I2C EEPROM

I2C EEPROMs can be used in varios ways. The filetwi-eeprom.frt defines words to access the
EEPROM at byte address level and at block level. A page is the native block size of the eeprom device,
that is stored in theVALUE twi.ee-b/blk . The hardware (i2c-) device address is stored in the value
twi.ee-addr . Currently EEPROM devices with 2byte addresses are supported.

Byte level access is done with the wordstwi.ee-c!andtwi.ee-c@. They transfer one byte from/to the
eeprom address given. The stack diagram is exactly the same as for the RAMc@ / c! . Every store
operation performes an full EEPROM erase/write cycle.

To transfer more bytes the block level words can be used. The transfer a whole EEPROM page to/from
RAM. The first page is at address 0, page 1 starts at addresstwi.ee-b/blk .

27

Chapter 7. Tools

7.1. Host

There a few number of tools on the host side (PC) that are specifically written to support amforth. They
are written in script languages like perl and python and should work on all major operating systems.
They are not needed to use amforth but may be useful.

7.1.1. Partdescription Converter

Thepd2amforth.pl script reads a part description file in XML format (comes withthe Atmel Studio
package) and produces the controller specificdevices/controllername/* files.

7.1.2. Documentation

The toolmakerefcard reads the assembly files from thewords subdirectory and creates a reference
card. The resulting LaTeX file needs to be processed withlatex to generate a nice looking overview of all
words available in the amforth core system.

The commandmake-htmlwords creates the linked overview of all words on the amforth homepage.

7.1.3. Uploader

To transfer forth code to the microcontroller some precautions need to taken. During a flash write
operation all interrupts are turned off. This may lead to lost characters on the serial line. One solution is
to send very slowly and hope that the receiver gets all characters. The programascii-xfer can do the job:

ascii-xfr -s -c $delay_char -l $delay_line $file > $tty

This works but the upload of longer files needs a very long time: $delay_char can be 1 or 2 ms,
$delay_line around 800 ms.

Another solution isamforth-upload.py . It was initially created by userpix (http://pix.test.at/) . His
algorithm checks for the echo of every character sent to the controller. At line ends the uploader waits for
the ok prompt to continue with the next line.

This algorithm works very fast without the risk of lost characters. An extension of this script provides
limited library support. In the source files a command

28

Chapter 7. Tools

#include filename

is used to upload the content offilename instead of the two words. The sources will only work with
this uploader utility, others will trigger the "word-not-found" exception on the microcontroller unless
they recognize the #include syntax (similar to the c preprocessor).

29

Chapter 8. Roadmap

8.1. More ANS94 Words

Amforth supports the ANS94 Core Wordset. Other word sets aremore or less completly supported as
well. Some deprecated words (likeexpectandquery are left out however.

Support for Blocks may be useful. It is not trivial to implement a standard 1KB block buffer on an
Atmega with only 1KB RAM. It can be useful to deploy block sizes smaller than 1KB to match the
native block sizes of the attached storage devices: serial EEPROM have e.g. 64 bytes, SD-Cards have
(usually) 512 bytes. Some rather simple code can be used fromthe library for I2C/TWI EEPROM
modules with native block sizes.

8.2. More Controller Types

Amforth can be used on any atmega with at least 8KB flash memory. A system with at least 16Kb is
recommended. There are pre-generated driver files from the XML part description files. Atxmega’s may
work with a future version.

8.3. Support

Amforth is not a commercial software. I hesitate to call it a product. Since you get all the source code for
the system, you should be able to solve all problems yourself. On the other side I’m more than interested
in any use of amforth and want to know what you’re doing with it. If you find anything strange or faulty
don’t hesitate to mail it to the mailing list (mailto:amforth-devel@lists.sourceforge.net) .

8.4. Contributors

amforth would not be the system it now is without the feedbackand help from its users. I would like to
thank all of them. The following people made an outstanding work to improve amforth (in no particular
order): Milan Horkel, Ullrich Hoffmann, Michael Kalus, Karl Lunt, Bruce Wolk, Lubos Pekny, Erich
Wälde. But there are many more that helped by simply asking howto do some tasks.

30

	amforth 4.8
	Table of Contents
	List of Tables
	Overview
	Chapter 1. First Steps
	1.1. User Interface

	Chapter 2. Hardware
	2.1. Controller
	2.2. Bootloader Support
	2.3. Fuses

	Chapter 3. Source Organisation
	3.1. Overview
	3.2. Core system
	3.2.1. Dictionary files
	3.2.1.1. dictcore.inc
	3.2.1.2. dictminimum.inc
	3.2.1.3. dictcompiler.inc
	3.2.1.4. dictappl.inc and dictapplcore.inc

	3.2.2. Device Settings

	3.3. Application Code

	Chapter 4. Architecture
	4.1. Overview
	4.2. CPU Forth VM Mapping
	4.3. Core System
	4.3.1. Threading Model
	4.3.2. Inner Interpreter
	4.3.2.1. EXECUTE
	4.3.2.2. NEXT
	4.3.2.3. DO COLON
	4.3.2.4. EXIT
	4.3.2.5. DODOES

	4.3.3. Interpreter
	4.3.3.1. SOURCE and REFILL
	4.3.3.2. Recognizer
	4.3.3.2.1. Example Recognizer

	4.3.4. Stacks
	4.3.4.1. Data Stack
	4.3.4.2. Return Stack

	4.3.5. Interrupts
	4.3.5.1. Example Interrupt Handling
	4.3.5.2. Implementation Details

	4.3.6. Multitasking
	4.3.7. Exception Handling
	4.3.8. User Area
	4.3.9. Word Lists and Environment Queries

	4.4. Memory Layout
	4.4.1. Flash
	4.4.1.1. Flash Write

	4.4.2. EEPROM
	4.4.3. RAM

	Chapter 5. Implementation
	5.1. ANS Words
	5.1.1. Core and Core EXT
	5.1.2. Block
	5.1.3. Double Number
	5.1.4. Exception
	5.1.5. Facility
	5.1.6. File Access
	5.1.7. Floating Point
	5.1.8. Locals
	5.1.9. Memory Allocation
	5.1.10. Programming Tools
	5.1.11. Word Lists and Search Order
	5.1.12. Strings

	5.2. Amforth
	5.2.1. COLD
	5.2.1.1. WARM
	5.2.1.2. TURNKEY
	5.2.1.3. QUIT

	5.2.2. MCU Access
	5.2.3. Assembler
	5.2.4. Memory
	5.2.5. Input Output
	5.2.6. Strings

	Chapter 6. Library
	6.1. Hardware Access
	6.2. Software Modules
	6.2.1. Multitasking
	6.2.2. TWI / I2C
	6.2.3. I2C EEPROM

	Chapter 7. Tools
	7.1. Host
	7.1.1. Partdescription Converter
	7.1.2. Documentation
	7.1.3. Uploader

	Chapter 8. Roadmap
	8.1. More ANS94 Words
	8.2. More Controller Types
	8.3. Support
	8.4. Contributors

