2DALLAS AW /1 XX 2V

Maxim/Dallas > App Notes > 1-WIRE® DEVICES

Keywords: i2c, 1-wire, bridge, ds2482, line driver, guide, slew, waveforms, master Nov 07, 2005

How to Use the DS2482 I12C 1-Wire Master

The DS2482 is an 12C bridge to the 1-Wire network protocol. As a bridge, the DS2482 allows any host with 12C communication to
generate properly timed and slew-controlled 1-Wire waveforms. This Application Note is a user's guide for the DS2482 12C 1-Wire Line
Driver, and provides detailed communication sessions for common 1-Wire master operations.

1. Introduction

The 1-Wire® communication protocol can be generated using the DS2482, which is a bridge for 12C communication to a 1-Wire network.
This bridge allows any host with 12C to generate properly timed 1-Wire waveforms. See Figure 1 for a simplified diagram of the DS2482
configuration. Implementing this protocol and navigating the available DS2482 commands can be time-consuming and confusing. This
document presents an efficient implementation of the basic and extended 1-Wire operations using the DS2482. The construction of 12C
input packets to handle 1-Wire communication is explained. These operations provide a complete foundation to perform all the functions
for current and future 1-Wire devices. Abstracting the 1-Wire operations in this fashion leads to 1-Wire applications that are independent
of the 1-Wire master type.

This document complements the DS2482 data sheet, but does not replace it. The DS2482 is available in two configurations, a single-
channel 1-Wire master (DS2482-100) and an eight-channel 1-Wire master (DS2482-800).

S04 : I 1-WVire Bus .
1-Wire Master
HOST EC Port DS2482
(pC) (2T Bridge) 1-Wire 1-Wvire
Slave Slave
SCL

Figure 1. Simplified illustration of DS2482 function as a bridge for 12C communication and a 1-Wire network.

2. The 1-Wire Interface

There are a few basic 1-Wire functions, called primitives, which an application must have in order to perform any 1-Wire operation. This
first function resets all the 1-Wire slaves on the bus, readying them for a command from the 1-Wire master. The second function writes
a bit from the 1-Wire master to the slaves, and the third reads a bit from the 1-Wire slaves. Since the 1-Wire master must start all 1-
Wire bit communication, a ‘read' is technically a 'write' of a single bit with the result sampled. Almost all other 1-Wire operations can be
constructed from these three operations. For example, a byte written to the 1-Wire bus is just eight single bit writes.

The 1-Wire Search Algorithm can also be constructed using these same three primitives. The DS2482 incorporates a search using the 1-
Wire triplet command, which greatly reduces the communication required to do a search.

Table 1 shows the three basic primitives (OWReset, OWWriteBit/OWReadBit, and OWWriteByte/OWReadByte), along with three other
useful functions (OWBIlock, OWSearch, msDelay) that together make up a core set of basic 1-Wire operations. These operation names
will be used throughout the remainder of this document.

Table 1. Basic 1-Wire Operations

OWReset Sends the 1-Wire reset stimulus and check for pulses of 1-Wire slave devices.
OWWriteBit/OWReadBit Sends or receives a single bit of data to the 1-Wire bus.
OWWriteByte/OWReadByte Sends or receives a single byte of data to the 1-Wire bus.

OWBIlock Sends and receives multiple bytes of data to and from the 1-Wire bus.

http://www.maxim-ic.com/
http://www.maxim-ic.com/
http://www.maxim-ic.com/appnotes10.cfm
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/1/ln/en
http://www.maxim-ic.com/ds2482
http://www.maxim-ic.com/an187

OWSearch Performs the 1-Wire Search Algorithm (see Application Note 187 mentioned above).
msDelay Delays at least the specified number of milliseconds.

Extended 1-Wire functions (such as overdrive communication functions) are not covered in the basic operations in the table above. Some
1-Wire slave devices can operate at two different communication speeds: standard and overdrive. All devices support the standard
speed; overdrive is approximately 10 times faster than standard. The DS2482 supports both 1-Wire speeds.

1-Wire devices normally derive some, or all their operating energy from the 1-Wire bus. Some devices, however, require additional
power delivery at a particular place in the protocol. For example, a device may need to do a temperature conversion or compute an SHA-
1 hash. The power for this action is supplied by enabling a stronger pullup on the 1-Wire bus. Normal communication cannot occur
during this power delivery. The DS2482 delivers power by setting the Strong Pullup (SPU) flag, which will issue a strong pullup after the
next byte/bit of 1-Wire communication. The DS2482-100 has an external pin (PCTLZ) to control a supplemental high-current strong
pullup.

Table 2 lists the extended 1-Wire operations for 1-Wire speed, power delivery, and programming pulse.

Table 2. Extended 1-Wire Operations

Sets the 1-Wire communication speed, either standard or overdrive. Note that this only changes the communication
speed of the 1-Wire master; the 1-Wire slave device must be instructed to make the switch when going from

Shiipee normal to overdrive. The 1-Wire slave will always revert to standard speed when it encounters a standard-speed 1-
Wire reset.

OWLevel Sets the 1-Wire power level (normal or power delivery).

OWReadBitPower Reads a single bit of data from the 1-Wire bus and optionally applies power delivery immediately after the bit is

complete.
OWWriteBytePower Sends a single byte of data to the 1-Wire bus and applies power delivery immediately after the byte is complete.

3. Host Configuration

The host of the DS2482 must have an 12C communication port. Configuration of the host is not covered by this document. The host
must, however, provide standard interface 12C operations. The required operations can be seen in Table 3.

Table 3. Required 12C Host Operations

Sets the 12C communication speed and selects the DS2482 device. The 12C_clock_delay is the time between clock
pulses for 12C communication. The DS2482_slave_address is the 12C address for the DS2482.

12CBus_write Writes an 12C byte to the selected DS2482. The byte is passed to the function to write.

Writes a packet of 12C bytes to the selected DS2482. The buffer of bytes along with the length of the buffer is
passed to the function.

Initl2C

12CBus_write_packet
12CBus_read Reads an 12C byte from the DS2482. The byte that was read is returned.

3.1. DS2482 Configuration

Before any 1-Wire operations can be attempted, the host must set up and synchronize with the DS2482 12C 1-Wire line driver. To
communicate with the DS2482, the slave address must be known. Figure 2 shows the slave address for the DS2482-100 and DS2482-
800.

7-Eit Save Address ([DS2482-100) 7-Eit Have Address (DE24E2-500

e e
r~ ™~ ~ ™
A A Al A A A A A A A A A A
o (o1 1 F:'.-'W‘ o (0] 1 [1 [AZAD) AL F:'.-'W‘

D/m/'m T t /71

hogt Significant Bt A0 ADOPiIn Ceterrines Mot Significant Bit AL AL ADO Digterrrines
ates Fead arYhte Fin States Fead arYite

Figure 2. DS2482 12C slave addresses.

3.2. DS2482 12C Commands

The following legend comes from the DS2482 data sheet and represents a short-hand notation to describe the 12C communication
sequences with the device. As we proceed, we will repeat these communication sequences and provide additional explanation and C code
examples for implementing the basic and extended 1-Wire operations.

12C Communication Sequences—Legend

SYMBOL |DESCRIPTION

S START Condition
AD, O Select DS2482 for Write Access
AD, 1 Select DS2482 for Read Access

Sr Repeated START Condition
P STOP Condition

A Acknowledged

A\ Not acknowledged

(ldle) Bus not busy

<byte> Transfer of one byte

DRST Command ‘Device Reset', FOh
WCFG Command "Write Configuration®, D2h
SRP Command 'Set Read Pointer’, E1h
1WRS Command '1-Wire Reset', B4h
1WWB Command '1-Wire Write Byte', A5h
1WRB Command '1-Wire Read Byte', 96h
1WSB Command '1-Wire Single Bit', 87h
1IWT Command '1-Wire Triplet', 78h

3.3. Data Direction Codes
Master-to-Slave Slave-to-Master

The data direction codes found in many of the Figures in this document show communication either from the master to the slave (grey)
or vice-versa, from the slave to the master (white). By looking at the shading of each code, the communication direction can be
established.

4. Device Reset

Figure 3 is the Device Reset 12C communication example. Reset Example 1 shows the DS2482 reset command, which performs a
global reset of the device state-machine logic and terminates any ongoing 1-Wire communication. The command code for the device
reset is OxFO.

- |ADD | A |DEST| A or | AD | A | =bytex| Ab I

_— | ===

Figure 3. Device reset after power-up. This example includes an optional read access to verify the success of the command.

F/ initiali=e the IZC port
iE(!TnitT2C{TZC_clock_delay,D32432 slave_address))

{
H

l4 reset the DIZ45:2

A4 DRAT iz OxFo
if(!T2CBuz write (DR3IT))
§

H

Example 1. Reset device code.

/4 Report an error that occurred

/S BReport an error that occurred

5. DS2482 1-Wire Operations

These are the commands sent to the DS2482 that affect 1-Wire communication.

5.1. OWReset
The Reset command (0xB4) generates a 1-Wire Reset/Presence Detect at the 1-Wire line. The state of the 1-Wire line is sampled and
reported through the Presence-Pulse Detect (PPD) and the Short Detected (SD) fields in the status register. Figure 4

shows 12C communication for the 1-Wire Reset command. Example 2 shows the command sent and status register checked for a
presence pulse.

s | ADD| A | TWES | A st | ADT | A | <byte= | A | <byte= | Al P

\ J
N

Eepeat until the 1'WE bit has changed to 0.

Figure 4. 1-Wire reset. Begins or ends 1-Wire communication. 1-Wire Idle (1WB = 0), Busy polling until the 1-Wire command is
completed, then read the result.

J/ OWReset

o

FF Bezetz the 1-Wire using IZC through the DE2452.
A

A4 returns 3uccess or Failure

A

uchar OWReset()

{

uchar buffer:
uchar test:

A reset the 1-Tire line
JforesetlnellireComnmnand is 0xEBd
if(!TECBus_write(resetlnellireCommand))

#7 Beport an error that occurred

¥
fori(:;)// checking if 1-Wire busy
{
A4 checking L3B of status register
A4 to see 1f 1-Wire is busy.
test = IZCBusz_read() | OxFE;
ifitest == OxFE)
{hreak;}
'
#f checking for presence pulse detect
teat = IZCBus_read() | OxFC;
ifitest == 0OxFE)
{
return Juccess; £ Presence Pulzse found
¥
elae
{
returnn Failure: A4 No presence pulse
¥

'

Example 2. OWReset code.

5.2. OWWriteBit /OWReadBit

The 1-Wire bit command (0x87) generates a single 1-Wire bit time slot. Figure 5 shows the 12C communication code for the 1-Wire
Single Bit command cases. Figure 6 is the bit allocation byte where if V is 1b, then a write-one time slot is generated; if V is Ob, a write-
zero time slot is generated. Example 3 shows OWWriteBit code and Example 4 shows OWReadBit code.

1-Wire Idle (TWE =03, busy polling until the 1-Wire command 15 completed.

s [aDo| & [1WSB| & [<byte=| & /ﬁjsiﬁléﬁeo_lWB it
— >

4

St |AD,1| A |<bytes| A |<byte=| AV | P

Figure 5. 1-Wire Single Bit. Generates a single time slot on the 1-Wire line. When 1WB has changed from 1 to O, the Status register
holds the valid result of the 1-Wire Single Bit command.

bit/ | bitd | bt [bitd [bt 3 | katd | ka1l | bat 0

i b b ¥ ¥ b ¥ ¥
%= do not care

Figure 6. 1-Wire Single Bit. Generates a single time slot on the 1-Wire line.

A4 0MTriteBit - Writes a single bit to 1-Wire using the D32452.
F
A4 walue - bit to be written to the 1-Wire (0 or 1)

F

/4 Beturn Success or Failure
£

uchar OWMriteBit{uchar walue)
!

uchar buff[3]:
uchar test;

buff[0] = onewireEitCommard; A5 1-Wire bit command

if(wvalue)
{
buff[l] = O0xFF;
i
else
i
bufffl] = O0x7F;
i
if (! I2CBus _write(sbuff[0],2))
{

return FAILUERE:
!

4/ checking if 1-Wire busy

/4 Check here to make sutre the 1-TWire isn't
A4 busy 3o other commands don’t hawve to check
// bhefore proceeding.

fori(::)
§
if(!'TECBus_read (sbuff[0], 1))
!
return FATLURE;
}

test = buff[0] | OxFE;

ifitest == OxXFE)
!

hreak:
I

H

return IUCCERS
!

Example 3. OWWriteBit code.

S OWEeadBit

£

A4 Beturns 0 or 1 for the bit read.
uchar 0OTWEReadBit()

{
uchar buff[3]:
OMTriteEit(Ll);

buff[0]
buff[l]

setReadPointerConmand;
statusRegister;

if (' IZCEBus write(sbuff[0],2))
{

!
else if(!IZCBus read{sbuff{=],1)]

{

/4 Beport an error that occurred

S Beport an error that aoccurred

'

if(buff[Z2] &« 0xZ20)
return 1:

!

elae

{
H

return 0:

!
Example 4. OWReadBit code.

5.3. OWWriteByte
The 1-Wire write byte command (OxA5) writes a single data byte to the 1-Wire line. 1-Wire activity must have ended before the DS2482

can process this command. Figure 7 shows the 12C write 1-Wire byte case. Code Example 5 checks 1-Wire activity before issuing the
write byte command.

Case B: 1-Wire Idle {1WE =0, busy polling until the 1-Wire command 15 completed.

5 ADD A 1WWE| A EE1) A J.k—————""Repeat until the TWE
1 s » bit has changed to 0.

1

St |AD1| A |<bytes | A |<byte=| &1 | P

Figure 7. 1-Wire Write Byte. Sends a command code to the 1-Wire line. When 1WB has changed from 1 to 0, the 1-Wire Write Byte
command is completed.

A/ 0MTriteByte
F
A4 Weitez a 1-Wire byte using I2C commandz sent to the DH2452.
F
/4 weEByte - The byte to be written to the 1-Wire.
r
vold OWWriteByte (uchar wrEvyte)
{
uchar buffer[Z]:
uchar test;

/4 set the read pointer to the status

/4 register to check 1-Wire busy

buffer[0] setReadPointerCommand,; S/ OxEL
butfer[l] statusRegister: A4 0=F0

if (! I&CBus_write(buffer,£))

{
/4 Beport an error that occurred
H
A4 checking if 1-Wire busy
for(:;]
{

test = I2CBus read() | OxFE:

ifitest == OxXFE)
i

H

break:

H

buffer[0]
butfer[l]

writeByteConmand,; // 0OxAS
wrEyre:

if (! I&CBus_write packet (buffer,2))
{

H

A4 Beport an error that occurred

A checking if 1-Wire busy
fori::)
!

test = IZCBus read() | OxFE:

ifi(test == OxXFE)
{

H

break:

!
Example 5. OWWriteByte code.

5.4. OWReadByte
The 1-Wire read byte command (0x96) reads a single data byte to the 1-Wire line. 1-Wire activity must have ended before the DS2482

can process this command. Figure 8 shows the 12C case. Code for a 1-Wire Read Byte Command can be found in Code Example 6. The
1-Wire activity is checked before issuing the read byte command.

1-Wire Idle (TWE =00, busy polling until the 1-3Wire command 15 completed.
= ADO| & |TWER| A \ ———FEepeat until the TWE

(_/' /—/;\ bit has changed to 0.

St |AD1| A |<byres | A |<byrer| A\ |

Sro | ADO| A =B A Elh A st | ADVT | A | <bytex | AY P

Figure 8. 1-Wire Read Byte. Reads a byte from the 1-Wire line. Poll the Status register until the 1WB bit has changed from 1 to 0. Then
set the read pointer to the Read Data register (code E1h) and access the device again to read the data byte obtained from the 1-Wire
line.

44 OUReadBvte

I

F# Beads a 1-Wire byte uszing IZC commands to the Di2452.
A

474 returns the byte read

F

uchar 0WReadBEyte

{
uchar buffer[2]:

uchar test:

/4 set the read pointer to the status

/4 register to check 1-Wire busy

buffer[0] = setReadPointerComnmand: S/ OxEl
butfer[l] = statusBegister; A4 0=F0

if (! I&CBus_write packet (buffer,2))
{

/S Beport an error that occurred

H

A4 checking if 1-Wire busy
fori::)
{

test = I2CBus read() | OxFE:

ifitest == OxXFE)
{

break:;

H
H

4/ readByteComnmand iz 0x96
if (! I<CBus_write(readByteConmand))

/# Beport an error that occurred

H
buffer[0] = setReadPointerCommand; S/ OxEl
butfer[l] = readbataRegister: J4 O=EL
if({!I2CBus_write packet (buffer,2))
{
/4 Beport an error that occurred
H
/S getz the byte that was read
elze
{

buffer[Z] = IZCBus read():
H

elae

{
H

buffer[2] = IZ2CBus read():

return butffer[2];

H

Example 6. OWReadByte code.

5.5. OWBIlock

The OWBIlock operation is just calling the byte operations since a block of data cannot be transferred without using the byte commands.
Example 7 shows a code example of OWBIlock.

F#4 OWElock - writes/reads a bhlock of data
44 block - block of data
A4 return - 3uccess or failure of the operation.
uchar 0WElock (uchar *block, uchar lemn)
{
uchar buffer[2]:
int i:
for(i=0;i<len; i)
{
owllritebyte (bhlock[i]):
buffer[0] = setReadPointerConmand; A4 The read pointer walue iz 0OxEL
buffer[l] = readblataBegister: /¢4 The read data register walue iz 0OxEl
if(!'T&CBus_write(sbuffer[0],2)])
{
return FATLUERE:
H
elze
block[i] = IZCBus_read|(]:
i
return SUCCESS !
'

Example 7. OWBIlock code.

5.6 OWSearch/1-WIRE Triplet Command

The Triplet command (0x78) generates three time slots, two read time slots, and one write time slot on the 1-Wire line. The direction
byte (DIR) determines the type of write time slot (Figure 9). Example 8 illustrates the 1-Wire Triplet command using the search
command with only one device attached. For an explanation of the 1-Wire search algorithm, see Application Note 187 (cited above)
which shows the 12C setup for a 1-Wire Triplet command.

Case & 1-Wire Idle (1'WE = 03, no busy polling.
5 | ADD| A TWT | A |=byte=| A P

—

(dte) |~

s | ADT | A | =bytes | AL &

Figure 9. 1-Wire Triplet. Performs a Search ROM function on the 1-Wire line. The idle time is needed for the 1-Wire function to complete.
Then access the device in read mode to get the result from the 1-Wire Triplet command.

A4 Global walue for the current serial namber
uchar Searchieriallum[8]:

A4 oneWirefearch
£

A4 Doez a 1-Wirte search using the 1-Wire Triplet command.
F

/S resetiearch - Feset the search(l) or noti0).
F# lasthewice - If the last device has been found(l) or not(0).

ff Doez a 1-Wite search using the 1-Wire Triplet command.

/4 resetiearch - Reszet the searchil] or notid).

Af lastDevice - If the last device has been found(l) or not{0).
A4 devicedddrezzs - The returned serial namber.

£

FS returns SUCCELS or FAILURE

£

uchar 0Wiearchiuchar resetiearch, uchar *lastDevice, uchar *devicelddrezs)
{

uchar retVal = FATLURE:

uchar bit_number = 1;

uchar last =ero = 0;

uchar serial _byte number = 0;

uchar serial _byte_mask = 1:

uchar firstBit, secondBit, dir:

uchar i = 0;

if(rezsetiearch)

!
laztDhewice = 0;
LaztDiscrepancy = 0;
!
Af 1Ef the last call was not the last one
if [(![(*lasthevice]]
{

4/ reset the l-wire
A4 1if there are no parts on l-wire, return FALSE
1E('0WReset (1]

{
A4 reset the search
lasthewice = 0;
LastDhiscrepancy = 0;
return FAILURE:

'

F4 Issue the LSearch BOM command
OWWireByte (0xFO) ;

A4 loop to do the search

do
{
if (bit_number < LastDiscrepancy)
{
if{3earchieriallNum[serial byte number] & serial byte mask)
dir = 1;
else
dir = 0;
}
elzse
{
A4 1f equal to last pick 1, 1f not then pick 0O
if(bit_mumbher==LastDiscrepancy)
dir = 1:
elze
dir = 0;
1
if('owTripletisdir, sfirstEit, ssecondBit))
{
return FAILURE
}
A4 1f 0 was picked then record its position in LastZero
if (firstBit==0 &£& secondBit==0 && dir == 0]
{

last_=zero = bit mumber;

H

Yy
L
L

A
£

if [(firstEit==0 &£& secondBit==0 && dir == 0]

last _zero = bit mumber;

44 check for no dewices on l-wire
if [(firstBit==1 &£& secondBit==1)
break:

J¢ set or clear the bit in the Jeriallum byte serial byte number
/¢ with mask serial byte mask
if (dir == 1)
JearchierialNum[serial _byte numher] |= serial byte mask:
glse
JearchierialMNum[serial byte numher] &= ~3erial byte mask:

A4 increment the byte counter bit number
/¢ and shift the mask serial byte_mask
bit_number++:

gerial byte mask <<= 1:

¢ 1if the mask iz 0 then go to new JerialNum[portrnum] byte serial byte number
F/ and reset mask
if (serial_bvwyte _mask == 0)
{
gerial byte numbher++:
gerial byte mask = 1;
i

!
while({serial byte number < §); J/ loop until through all JerialMum[portihun]

retWal = FAILURE:
F4 1f the search was succezssful then
if (bit mamber == 65)//[| crcl))

{

J# search successful so set LastDiscrepancy,lastDewvice
LastDiscrepancy = last zero;
if(LastDiscrepancy==0]

*lastDewvice = 3UCCESSE;

elae
*lastDewice = FAILTEE ;

for (i=0; i<d; i++)
{

H

returh STUCCESS:

devicedddress[i] = SearchierialMum[i]:

H

A5 1 no device found then reset counters 2o next 'next' will hbe
S like a firstc
if [('retWal || 'Searchieriallum({0])

{

LazstDiscrepancy = 0;
*lastDevice = FAILURE:
retWal = FATLURE;

H

return retVal:;

oneTriplet
Uzez the 1-Wire Triplet command.
dir - Returns the direction that was chosen (1] or (0.

firstBit - Returns the first bit of the search (1) or (0).
gecondBit - Returnzs the complement of the first bit (1) or (0).

S0 WokEo L L-W1lLE 1L1lplel Lumilallil.

I

A4 dir - Beturns the direction that was chosen (1) or (0).

FAf firstBit - Returns the first bit of the search (1) or [(0).

Af secondBit - Returns the complement of the first bit (1) or [(0).
F

A4 returns 3UCCES or FAILURE

F

uchar owTripleti{uchar #dir, uchar *firstEit, uchar ¥*secondBit)

i

uchar buff[3]:
uchar test:;

buff[0] = 0x7a;

if(*dir>0)
*dir = [uchar)0xFF;

buff[1l] = *dir:

if (! I2CEus write{sbuff[0],2))
§

H

lcd putchar ('£');

if (! I2CEus_readishuff[2],1))
{

H

else

{

return FAILUERE:

test = buff[2] & O0x20;
ifitest == 0OxZ0)
*firstBit = 1;
else
*firstBitc = 0;

test = buff[2] & 0Ox40;
ifitest == 0x40)
*gecondEit = 1:;
elae
*zecondBit = 0O;

test = buff[2] « 0x&80;
ifitest == 0x30)
*dir = 1;
elae
*dir

0:

return SUCCESS:
'

return FATILUERE :

H

Example 8. OWSearch code.

6. Extended 1-WIRE Operations

6.1. OWSpeed
Example 9 shows how to change the speed of the 1-Wire bus using the DS2482. Overdrive or standard speeds are available.

A4 OWEpeed - changes the 1-TWire speed to normal or overdriwve.

£ 4 Overdrive match rom or overdrive skip rom will be needed.
A

Ff speed - owverdrive (Owverdriwe) or standard [(Standard) speed.

£f state_config - The current configuration byte settings.

F

/4 return - success or failure of the operation.
F

uchar 0Wipeed(uchar speed, uchar state_confidg)

{

uchar buffer[Z]:

buffer[0] = writeConfigCommand;

if(speed == Overdriwve)

buffer[l] = (state config | 0x083) & O0x7F;
else

buffer[l] = (state config | 0x50) & OxXF7;
if({!I2CBus _write packet (buffer,2))
{

return FAILUERE:
!

return SUCCERS ;

!
Example 9. OWSpeed code.

6.2. OWLevel
Example 10 shows how to change the level of the 1-Wire bus using the DS2482. Normal or power-delivery modes are available.

A OW5peed - changes the 1-Wire speed to normal or owverdriwve.

£ & Owverdrive match rom or overdrive skip rom will be needed.
F

/¢4 speed - overdrive (Overdriwe) or standard (3tandard) speed.

£f state_config - The current configuration byte settings.

r

J# return - success or failure of the operation.
Fi

uchar 0WSpeed{uchar speed, uchar state config)

{

uchar buffer[Z]:

buffer[0] = writeConfigConmand:

if(speed == Overdriwve)
buffer[1] = (ztate_config | 0x08) & Ox7F:
elze

buffer[l] = (state_config | Ox80) & OxF7;

if (! T&CBus_write _packet (buffer,2))

{
return FAILTRE:

H

return SUCCESS :
'

Example 10. OWLevel code.

6.3. OWReadBitPower

Example 11 shows the code used for OWReadBitPower, which reads a 1-Wire bit and implements power delivery. When the Strong
Pullup (SPU) bit in the configuration register is enabled, the DS2482 actively pulls the 1-Wire line high after the next bit or byte
communication.

44 OReadBitPower

£

S config byte - current configuration settings
Afdelay - ms delay used before disabling actiwe pullup
A

/A4 RBeturns the bit information read.

£

uchar 0WReadBitPower (uchar config byte)

{
uchar buffer[2]:

uchar return birt:

buffer[0] = writeConfigCommand;

buffer[l] = (config byte | 0x04) & OxXBF:

A Setz strong pullup active so after the next byte or bit
A4 strong pullup will he actiwe

if (! I&CBus_write packet (buffer,2))
{

Error;

H

return OWReadBit() :

H

Example 11. OWReadBitPower code.

6.4. OWWriteBytePower
Example 12 shows the code used for OWWriteBytePower, which writes a 1-Wire byte and implements power delivery. When the Strong

Pullup (SPU) bit in the configuration register is enabled, the DS2482 actively pulls the 1-Wire line high after the next bit or byte
communication.

A/ OMIriteEytelower

F

A config byte - current configuration settings.

A5 wrbyte - byte to be written before the strong pullup is active
Ff delay - m=s delay used before dizabling active pullup

F

FAf Beturns failure or success of the operation.

F

uchar 0WWriteByteFower (uchar config byte, uchar wrhiyte)
i

uchar buffer[Z]:

buffer[0] writeConfigCommand;

buffer[l] = (config byte | 0x04) & OxEBF;

A Setz strong pullup active zo after the next byte or bit
A4 strong pullup will be actiwe

if(!I&CBus_write packet (buffer,2))
i

H

return FAILUERE:

OMTriteEyte (wrbhyte) ;

return IUCCERS
!

Example 12. OWWriteBytePower code.

Conclusion

The DS2482 has successfully been tested to convert 12C commands to 1-Wire communication. This document has presented a complete
1-Wire interface solution using the DS2482 12C 1-Wire Line Driver. The code examples are easily implemented on any host system with
an 12C communications port. A complete C implementation is also available for download.

1-Wire is a registered trademark of Dallas Semiconductor Corp.

Application Note 3684: http://www.maxim-ic.com/an3684

More Information
For technical questions and support: http://www.maxim-ic.com/support

For samples: http://www.maxim-ic.com/samples
Other questions and comments: http://www.maxim-ic.com/contact

Related Parts
DS2482-100: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS2482-800: QuickView -- Full (PDF) Data Sheet -- Free Samples

AN3684, AN 3684, APP3684, Appnote3684, Appnote 3684
Copyright © 2005 by Maxim Integrated Products
Additional legal notices: http://www.maxim-ic.com/legal

http://files.dalsemi.com/auto_id/public/an3684.zip
http://www.maxim-ic.com/an3684
http://www.maxim-ic.com/support
http://www.maxim-ic.com/samples
http://www.maxim-ic.com/contact
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4382/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2482-100-DS2482S-100.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2482-100&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4338/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2482-800-DS2482S-800.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2482-800&ln=en
http://www.maxim-ic.com/legal

	maxim-ic.com
	How to Use the DS2482 I2C 1-Wire Master - AN3684

