

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

Propeller Micro C (PMC)
Specification

Public Release
4/15/2010

Propeller Micro C Language Specification – April 15, 2010 Page 2 of 31

Table of Contents

1 – INTRODUCTION 4

1.1 – Goals and Target Audience 4

1.2 – Feature Highlights 4

2 – OVERVIEW OF THE PROPELLER MICRO C LANGUAGE 5

2.1 – Core C Elements and Propeller Micro C Support 5

2.2 – Additional Propeller Micro C Elements 8

2.3 – C Libraries 10

3 – LANGUAGE FUNCTIONAL DETAILS 11

3.1 – Fundamentals 11
3.1.1 - PMC Object Concept 11
3.1.2 – PMC Object Structure 11
3.1.3 – PMC Processing 13

3.2 – Identifiers 13
3.2.1 – Identifier Rules 14
3.2.2 – Identifier Types 14

3.3 – Literals 15

3.4 – Variables 16

3.5 – Constants 16
3.5.1 – Normal Constants 16
3.5.2 – Enumerated Constants 17

3.6 – Methods 17
3.6.1 – C Methods 17
3.6.2 – ASM Methods 18

3.7 – Operations 19
3.7.1 – Mathematical Operations 19
3.7.2 – Comparison Operations 20
3.7.3 – Bitwise Operations 20

3.8 – Memory Access 21
3.8.1 – Variables 21
3.8.2 – Arrays 21
3.8.3 – Pointers 22
3.8.4 – Structures 23
3.8.5 – Direct Access 24

3.9 – Conditional Statements 26
3.9.1 – The if..else Statement 27
3.9.2 – The switch Statement 27

3.10 – Loop Statements 27

Propeller Micro C Language Specification – April 15, 2010 Page 3 of 31

3.10.1 – The while Loop 27
3.10.2 – The do..while Loop 28
3.10.3 – The for Loop 28

3.11 – Unconditional Branching Commands 29
3.11.1 – continue 29
3.11.2 – break 29
3.11.3 – repeat 29

3.12 – Built-in Functions 29

3.13 – Predefined Variables 30

Propeller Micro C Language Specification – April 15, 2010 Page 4 of 31

1 – Introduction
Parallax is developing a C-based programming language for the Propeller
microcontroller. Though the name is subject to change, it is currently called Propeller
Micro C (PMC). The language and supporting system will be integrated into the
Propeller Tool software giving developers the ability to freely program Propeller
Applications in three languages: C, Spin, and Propeller Assembly.

1.1 – Goals and Target Audience

This project meets a number of goals for Parallax's Education department and those of
the company in general. The target audience includes professional engineers, college
students, high school students, and hobbyists of the electronic and computer sciences.

o Needs of Parallax Education department
o Easy to use
o Free and built-in to the Propeller Tool
o Provides entry point to high school and college classrooms currently

unwilling or unable to use Spin
o Delivers a natural introduction/transition to Spin and Propeller Assembly
o Creates long-term platform to build next generation educational tools upon

o Needs of existing and future Parallax customer base
o Easy to use
o Free and built-in to the Propeller Tool
o Attractive to wide customer base including professional engineering shops
o Directly maintained and supported by Parallax staff
o Compatible with existing Spin and Propeller Assembly objects

1.2 – Feature Highlights

o Supported directly in the Propeller Tool software with moderate enhancements.
o Based upon many ANSI C89 and some C99 standards

o PMC is a custom implementation of the C language that embraces C
standards that do not conflict with the principles of, or the efficient use of,
the Propeller microcontroller. It is designed with careful attention to the
hardware, existing languages, and development environment.

o PMC code looks and feels much like standard C code.
o PMC code translates into Spin and Propeller Assembly code at compile-time and

is processed as is normal by the Propeller Tool and the Propeller microcontroller.
o PMC-based applications run just like standard Spin/Asm-based apps.
o Existing Propeller Objects (Spin/Asm) are easily and naturally supported.

 Propeller Applications can be constructed and distributed as a
mixture of individual and/or community-developed PMC, Spin, and
Propeller Assembly-based objects in a tidy Propeller Archive format
compatible with the Propeller Tool.

o Developers can easily view how their PMC code translates to the
Propeller's native Spin language.

o PMC allows the inclusion of Propeller Assembly.
o Supported in a Propeller-compatible fashion that emphasizes the

architecture's intent-of-use.

Propeller Micro C Language Specification – April 15, 2010 Page 5 of 31

2 – Overview of the Propeller Micro C Language
The goal of Propeller Micro C (PMC) is to provide developers familiar with the C
language the ability to program the Propeller without obscuring the architecture or the
principles behind its design. PMC achieves this first by supporting compatible core C
features and then extending the language by building in native Propeller features.

Certain features of standard C are not supported by PMC either because there is no
corresponding Propeller feature, or because they violate Propeller principles of software
design. Parallax has taken great effort to support as many standard C features as is
practical while staying true to the spirit of the Propeller.

The following illustrates a summary view of elemental features of the PMC language.
Additional detail is provided in section 3 – Language Functional Details.

2.1 – Core C Elements and Propeller Micro C Support

Propeller Micro C implements many of the core ANSI C standards (much of C89 and
some of C99). Below is the full listing of core C keywords and operators along with
notes regarding support and special details in Propeller Micro C.

Table 1 – Core C Keywords
Keyword Supported? Details

auto no Not necessary
break yes
case yes
char yes
const yes

continue yes
default yes

do yes
double no Don’t have a double accurate float type

else yes
enum yes

extern yes and no
Only used in place of Spin's PUB to have the
same effect (as defined by C89). This is
optional as it's the default method scope.

float yes

Supported for constants and variables,
though variable support will be through the
automatic inclusion and use of the floating
point objects.

for yes
goto no Propeller doesn’t support

if yes
inline no

int yes
long yes

register no

Should specify variables in desired order for
fast access if that’s important, otherwise
using register may change variable
placement in memory in a way that is not
expected by user.

Propeller Micro C Language Specification – April 15, 2010 Page 6 of 31

restrict no
return yes
short yes

signed yes But not on int, long, or float.
sizeof yes Provides compile-time constant.s

static yes and no

Only used in place of PRI to have the same
effect (as defined by C89). Was going to
consider this for data, but now may choose a
different method.

struct maybe Developing possible implementations
switch yes
typedef maybe Will support if struct is supported

union maybe
Will support if struct is supported/if
implementation is not terribly complicated

unsigned no
Default signed types have no unsigned
counterparts.

void yes
Generates compiler error if function used in
expression or argument (since it returns no
usable value)

volatile no
Not necessary because all variables are
assumed to be modified during runtime by
any means.

while yes

_bool no Implemented as simply bool

_complex no

_imaginary no

Table 2 – Preprocessing Directives
Directive Supported? Details
#define yes

defined maybe
Under consideration; may use a simplified
and flexible form of #if.

#undef yes
#include no Use class, see Table 6.

#if yes
#elif yes

#else yes
#endif yes
#ifdef no Use #if defined() instead

#ifndef no Use #if !defined() instead
#line no

#pragma no Not necessary
#error no

Table 3 – Operators
Operator Supported? Details

(type) yes
! yes Boolean NOT

++ yes
-- yes
+ yes

Propeller Micro C Language Specification – April 15, 2010 Page 7 of 31

- yes
* yes
/ yes

% yes Modulus
+= yes
-= yes
*= yes
/= yes

%= yes
< yes

<= yes
> yes

>= yes
== yes
!= yes
&& yes Boolean AND
|| yes Boolean OR
?: maybe
= yes
~ yes Bitwise NOT
& yes Bitwise AND
| yes Bitwise OR
^ yes Bitwise XOR

<< yes
>> yes
&= yes
|= yes
^= yes

<<= yes
>>= yes

Table 4 – Value Indicators
Indicator Supported? Details

(none) yes Decimal (base-10) value.
. (decimal point) or e yes Floating-point value.

0 no Octal (base-8) is not supported.
0x yes Hexadecimal (base-16) value follows.

' ' (single quotes) yes Character included.
" " (double quotes) yes String of characters included.

Table 5 – Special Characters and Escape Sequences
Directive Supported? Details

{ } yes
; yes
\ yes
& yes Address of
* yes Indirection (ex: *p)
[] yes Array index indicators
. yes Member of

-> yes Member of pointer
() yes Function call

Propeller Micro C Language Specification – April 15, 2010 Page 8 of 31

\a yes (7)
\b yes (8)
\f yes (12)
\n yes (10)
\r yes (13)
\t yes (9)
\v yes (11)
\' yes (39)
\" yes (34)

\? maybe
Why is this needed? What special purpose is
'?' used for?

\\ yes (92)
\ooo yes Yes, but as decimal, not octal
\xh yes

2.2 – Additional Propeller Micro C Elements

In addition to the core C keywords (section 2.1), Propeller Micro C includes natural
support for most Propeller-specific features via keywords derived from Spin or
otherwise. These features are available automatically without the need to "include" any
header files.

Table 6 – Additional Keywords
Directive Details

class Provides access to Propeller Objects.

Table 7– Additional Keywords (Spin-Derived)
(Stricken keywords have alternate or no support)

Spin Command Details

abort
Supported, but collides with C function in stdlib.h –
may have to resolve this

byte Feature supported as an additional type

{symbol} byte data {[count]}
Feature may ??? be supported via byte type syntax
in data

byte [baseaddress] {[offset]} Supported. Direct memory access, section 3.8.5.1
symbol.byte {[offset]} Not Supported.

bytefill Implemented as memset(); see section 3.8.5.2
bytemove Implemented as memmove(); see section 3.8.5.3
chipver See section 3.12
clkfreq See section 3.12

clkmode See section 3.12
clkset See section 3.12

cnt See section 3.13
coginit See section 3.12
cognew See section 3.12
cogstop See section 3.12
constant Not supported; very specialized, rare case
ctra/ctrb See section 3.13

dat in some appropriate form
dira See section 3.13

file “filename” married with DAT block
float Supported; merges with C float type

Propeller Micro C Language Specification – April 15, 2010 Page 9 of 31

frqa/frqb See section 3.13
ina See section 3.13

lockclr See section 3.12
locknew See section 3.12
lockret See section 3.12
lockset See section 3.12

long Supported; merges with C long type

{symbol} long data {[count]}
Feature may ??? be supported via long type syntax
in data

long [baseaddress] {[offset]} Supported. Direct memory access, section 3.8.5.1
longfill Implemented as memset(); see section 3.8.5.2

longmove Implemented as memmove(); see section 3.8.5.3
lookdown See section 3.12
lookdownz See section 3.12

lookup See section 3.12
lookupz See section 3.12

outa See section 3.13
par See section 3.13

phsa/phsb See section 3.13

pri
Feature supported as "static" storage type on
method declaration

pub
Feature supported as "extern" storage type on
method declaration

reboot See section 3.12
result See section 3.13
return Supported; merges with C return command
round through some directive?

spr See section 3.13
strcomp See section 3.12

string
support just like method calls - check comparable
C syntax

strsize See section 3.12
trunc through some directive?
vcfg See section 3.13
vscl See section 3.13

waicnt See section 3.12
waitpeq See section 3.12
waitpne See section 3.12
waitvid See section 3.12
word Feature supported as an additional type

{symbol} word data {[count]}
Feature may ??? be supported via word type
syntax in data

word [baseaddress] {[offset]} Supported. Direct memory access, section 3.8.5.1
symbol.word {[offset]} Not supported.

wordfill Implemented as memset(); see section 3.8.5.2
Wordmove Implemented as memmove(); see section 3.8.5.3

Table 8– Additional Operators
Operator Details

** Multiply, return high
**= Multiply, return high (assign)

~^ Sign-extend bit 7

Propeller Micro C Language Specification – April 15, 2010 Page 10 of 31

~~^ Sign-extend bit 15

~ Post-clear to 0
~~ Post-set to -1
?? Random Number
^^ Square Root
#> Limit minimum

#>= Limit minimum (assign)
<# Limit maximum

<#= Limit maximum (assign)
<:= Less than (assign)
>:= Greater than (assign)
<== Less than or equal (assign)

>== Greater than or equal (assign)

=== Equal (assign)
!== Not equal (assign)

&&= Boolean AND (assign)
||= Boolean OR (assign)
<+ Rotate left

<+= Rotate left (assign)
+> Rotate right

+>= Rotate right (assign)
~> Shift arithmetic right

~>= Shift arithmetic right (assign)
>< Reverse

><= Reverse (assign)
|< Decode
>| Encode

Table 9 – Additional Value Indicators
Indicator Details

0b Binary (base-2) value follows.
0q Quaternary (base-4) value follows.

2.3 – C Libraries

The standard C libraries provide many functions that have no corresponding feature in
the Propeller architecture and many other functions that are already covered by existing
Propeller objects. The remaining C library functions that are considered vital to
Propeller operation are supported by PMC as built-in extensions; no "standard" libraries
need be included in an application just to use them.

Since existing Propeller objects are openly accessible by PMC, other functions normally
provided by standard C libraries can be provided by existing Propeller objects instead.

Table 10 – PMC Built-In Functions
Function Details

memmove() Enhanced memory move combines support of Spin's bytemove,
wordmove, and longmove. See section 3.8.5.3

memset() Enhanced memory set combines support of Spin's bytefill,
wordfill, and longfill. See section 3.8.5.3

Propeller Micro C Language Specification – April 15, 2010 Page 11 of 31

3 – Language Functional Details
This section provides Propeller Micro C implementation details.

3.1 – Fundamentals

A PMC-based application consists of building block objects (written in PMC, Spin, and
Assembly) whose collection of methods and data work together to achieve the
application's goal. Objects for common tasks are included in the Propeller Library while
others written by individual developers are freely available in the Propeller Object
Exchange. The PMC and Spin languages promote object creation and sharing, by
design, in their structure and function.

Each PMC object consists of executable C code organized into blocks called methods–
functions that logically belong to the object. These methods invoke each other to
achieve the desired task and many can be called from outside the object by methods in
other objects that specifically include them.

In addition, objects may choose to parallel-process certain code (methods or assembly
code) by "launching" them into other cogs (processors) on the Propeller.

The architectural features of the Propeller and its native languages (Spin and Propeller
Assembly) are made available in PMC through tightly integrated extensions of the C
language. The concepts of such things can be learned from existing Propeller
documentation outside of this specification.

3.1.1- PMC Object Concept

PMC, like Spin, is a high-level language that uses objects. Objects are conceptual
devices that encapsulate data, and the code meant to operate on that data, into one
well-defined entity. Objects embody the essence of an entity– its attributes, behavior,
and its interface (input and output) with the environment outside of it.

The PMC and Spin languages embrace the core concept of objects– encapsulation.
However, the implementation of encapsulation is different from that of many object
languages. Specifically, a Propeller object is a source code file, and a source code file
is a Propeller object. Everything inside the file (comments, methods, assembly, and
data) is part of that object and describes its nature. Thus, a file is the encapsulation of
an object, and the name of the object is, by definition, the file's name.

In contrast, while other object languages may be used in a similar way, the trend is to
pack multiple objects, called classes, into a single file. Arguably, there are some
advantages to that, but the practice leads to name collisions in higher-level objects– a
programming obstacle that PMC and Spin completely eliminates.

3.1.2 – PMC Object Structure

Here is an example of a PMC-based object. As an example, it contains comments,
directives, a C method, and an assembly method.

Example 1 – PMC Object

Propeller Micro C Language Specification – April 15, 2010 Page 12 of 31

/* This object is just for example purposes
 It really does nothing very useful. */

#define baud 115_000

class "Parallax Serial Terminal" pst;

void main()
 {
 int counter; //A counter variable

 pst.Start(baud); //Start pst object
 pst.Str("Propeller Counting\n"); //Display heading on pst
 for(counter = 0; counter < 1000; counter++) //Loop 1000 times
 {
 pst.PositionX(0); //Move to start of line
 pst.Dec(counter); //Display current count
 }
 cognew(toggle, 0); //Launch assembly method
 }

asm toggle
 {
 long time = 0
 long delay = 100_000

 mov dira, # |< 0 //Set I/O 0 to output
 mov time, cnt //time is cnt + delay
 add time, delay

 twiddle xor outa, # |< 0 //outa[0] = !outa[0]
 waitcnt time, delay //wait for delay
 jmp #twiddle //loop
 }

The class declaration creates a symbolic name, pst, for a single instance of the
preexisting object "Parallax Serial Terminal." This object can later be referred to as pst
and it's methods can be accessed via the pst.methodname format.

The main method contains executable code and is declared using a typical C format.
This method is special only in that it is called "main;" every PMC object must have one
method called main which will become the first method executed if that object is the top
object in the application.

The statements inside main follow typical C conventions with the addition of the pst
object references. Read the comments to the right of the code for a description of each
line.

The toggle method is the most notable difference between standard C and PMC. It is
declared as type asm which means it contains Propeller Assembly code and data. Asm
methods must only contain Propeller Assembly code, variable and data declarations,
and comments. Asm methods never have declared parameters; however, since they
must always be launched into a cog via a cognew or coginit they naturally receive a
14-bit value in their cog’s par register that can be used to convey a memory address to
operate on.

Comments

Directives

C Method

Assembly Method

Propeller Micro C Language Specification – April 15, 2010 Page 13 of 31

Directives and methods may be defined in any order. If this object were compiled as
the top object in the application, the main method (regardless of its position in the file)
would be the first method the application executes.

3.1.3 – PMC Processing

When a PMC object is compiled by the Propeller Tool, the source code is translated to
Spin source code and then compiled (tokenized and assembled) by the Propeller Tool's
Spin Compiler. This happens as one seamless process, as if the object were already
written in the Propeller's native language(s), Spin and Propeller Assembly.

The example in section 3.1.2, when compiled, would first be silently translated into the
following Spin/Assembly code that would immediately afterwards be compiled in the
normal fashion.

Example 2 – Spin Translation of PMC Object

{ This object is just for example purposes
 It really does nothing very useful. }

CON

 Baud = 115_000

OBJ

 pst : "Parallax Serial Terminal"

PUB main | counter

 pst.Start(baud) 'Start pst object
 pst.Str(string("Propeller Counting", 13)) 'Display heading on pst
 repeat counter from 0 to 999 'Loop 1000 times
 pst.PositionX(0) 'Move to start of line
 pst.Dec(counter) 'Display current count
 cognew(@toggle, 0) 'Launch assembly method

DAT

 toggle org

 mov dira, # |< 0 'Set I/O 0 to output
 mov time, cnt 'time is cnt + delay
 add time, delay

 twiddle xor outa, # |< 0 'outa[0] = !outa[0]
 waitcnt time, delay 'wait for delay
 jmp #twiddle 'loop

 long time 0
 long delay 100_000

3.2 – Identifiers

Identifiers are alphanumeric names either created by the compiler (keywords) or by the
code developer (user-defined words) representing constants, variables, types, methods,
etc.

Comments

Constants

Spin Method

Data and Assembly

Objects

Propeller Micro C Language Specification – April 15, 2010 Page 14 of 31

3.2.1 – Identifier Rules

Identifiers must fit the following rules:

o Begins with a letter (a – z) or an underscore '_'.
o Contains only letters, numbers, and underscores (a – z, 0 – 9, _); no spaces

allowed.
o Must be 30 characters or less.
o Is unique within the given scope; not an existing keyword or user-defined

identifier. Identifiers are not case-sensitive in PMC.

3.2.2 – Identifier Types

The Propeller is a 32-bit device. This limits the maximum size of natural storage to 4
bytes in length. Various types can be derived from this as either 1-byte, 2-byte, and 4-
byte entities.

Identifier types, storage requirements, and ranges supported by PMC are shown in
Table 11.

Table 11 – Identifier Types
Type Size Range in Decimal (Hexadecimal)
void n/a n/a

bool 1 byte -1 [true] or 0 [false] ($FFFFFFFF1 to $0)

char 1 byte 0 to 255 ($00 to $FF)

byte 1 byte 0 to 255 ($00 to $FF)

signed char 1 byte -128 to 127 ($FFFFFF802 to $7F)

signed byte 1 byte -128 to 127 ($FFFFFF802 to $FF)

short 2 bytes 0 to 65535 ($0000 to $FFFF)

word 2 bytes 0 to 65535 ($0000 to $FFFF)

signed short 2 bytes -32768 to 32767 ($FFFF80002 to $7FFF)

signed word 2 bytes -32768 to 32767 ($FFFF80002 to $7FFF)

int 4 bytes -2,147,483,648 to 2,147,483,647 ($80000000 to $7FFFFFFF)

long 4 bytes -2,147,483,648 to 2,147,483,647 ($80000000 to $7FFFFFFF)

float 4 bytes -3.4e+38 to 3.4e+38 ($FF7FC99E to $7F7FC99E)
1 Non-zero Boolean values are promoted to -1, which is $FFFFFFFF at time of evaluation.
2 Signed types smaller than long are sign-extended at the time of evaluation.

The types byte, char, word, and short are unsigned. By using the prefix signed, they
become signed types that use the same storage size as their unsigned counterparts.

The types long, int, and float are signed. They can not be made to be unsigned.

The Boolean type, bool, is implemented as a signed byte. It has two values, true and
false, that correspond to -1 (or non-zero) and 0, respectively. NOTE: Due to
architectural design, true in PMC differs in sign from ANSI C true; however, in both
cases any non-zero value is treated as true.

3.2.2.1 – Translation of Void Type

The void type doesn't have a corresponding feature in Spin; every method returns a
value (defaults to 0) regardless of whether it will be used or not. To effectively translate
void methods, the PMC translator simply ensures that void methods don't modify the
result local variable and references to the method don't expect a value.

Propeller Micro C Language Specification – April 15, 2010 Page 15 of 31

Void parameter lists and casting are disallowed.

3.2.2.2 – Translation of Bool Type

The bool type doesn't have a directly corresponding feature in Spin; any integer value
can be treated as a Boolean value where 0 is false and non-zero is true. The PMC
Translator treats bool types as byte values when used with Boolean operators, and as
~byte (sign-extended byte value) when used with mathematical and bitwise operators.

3.2.2.3 – Translation of Byte and Char Types (Unsigned/Signed)

The byte and char types both translate to byte. If signed, they are both translated as
~byte (sign-extended byte value) wherever evaluated, and truncated to byte when
necessary.

3.2.2.4 – Translation of Word and Short Types (Unsigned/Signed)

The word and short types both translate to word. If signed, they are both translated as
~~word (sign-extended word value) wherever evaluated, and truncated to word when
necessary.

3.2.2.5 – Translation of Long and Int Types

The long and int types both translate to long. They are always signed.

3.2.2.6 – Translation of Float Type

The float type translates differently depending on how it is used. If it is a constant, it is
treated naturally by the compiler when used in a constant expression. If it is a variable,
or is used in a variable expression, the floating point objects are included and related
methods are called to evaluate it.

3.3 – Literals

In PMC code, literal values can be represented in binary (base-2), quaternary (base-4),
decimal (base-10), hexadecimal (base-16), a characters, or a string of characters.

Numerical values can also use underscores, '_', as group separators for clarification.
The underscore separator can be used in place of commas (such as in decimal values)
or to form logical groups of bits, bytes, words, etc.

Table 12 – Forms of Literal Values
Base Type of Value Indicator Examples

2 Binary 0b 0b1010, 0b1110_1001

4 Quaternary 0q 0q2130_3311, 0q3311_1012

10
Decimal
(integer)

none
1024, 2_147_483_647

10
Decimal

(floating-point)
. (decimal point) or e

0.70712, 1e6

16 Hexadecimal 0x 0x1AF, 0xFFAF_126D

n/a Character ' ' (single quotes) 'A', '9'

n/a String " " (double quotes) "Testing", "Hello\n"

Except for floating point literals, numerical literals are always treated as a long type and
are automatically cast to the destination type in expression results. Floating point
literals are of type float.

String literals are stored internally as an array of char with a null terminator, \0.

Propeller Micro C Language Specification – April 15, 2010 Page 16 of 31

3.3.1.1 – Translation of Literals

Literal values have simple translations.

Table 13 – Literals
Example Notes Translation

0bn Binary %n
n / n.n / nen Decimal (integer/floating-point) n / n.n / nen

0qn Quaternary %%n
0xn Hexadecimal $n
'c' Character "c"
"s" String "s"

3.4 – Variables

Variables are declared in the form: type identifier < = literal >;

Type is one of the valid types from section 3.2.2 – Identifier Types.

Identifier is a unique name for the variable; see section 3.2.1 – Identifier Rules.

The optional literal field initializes the variable to the specified value.

3.4.1.1 – Translation of Variables

The following table demonstrates some variable declarations.

Table 14 – Variables
Example Translation
int temp; VAR long temp

short count = 100;
VAR word count

count := 100
char smallval VAR byte smallval

3.5 – Constants

There are two types of constants; normal and enumerated.

3.5.1 – Normal Constants

Normal constants, simply called constants, are declared in a form very similar to
variables:

 const type identifier = literal;

All fields are exactly the same as with variables except that the declaration is preceded
by the type qualifier const, to indicate it is a constant, and the literal field is required.

References to constants later in the code are limited to read-only access; constants can
not be modified.

3.5.1.1 – Translation of Normal Constants

The following table demonstrates some constant declarations.

Table 15 – Constants
Example Translation

const int speed = 80_000_000; CON speed = 80_000_000
const short count = 100; CON count = 100

Propeller Micro C Language Specification – April 15, 2010 Page 17 of 31

const char smallval = 'A'; CON smallval = 'A'

3.5.2 – Enumerated Constants

Enumerated constants are a collection of identifiers with an associated type that have
certain discrete integer values. The declared enumeration type of the group can also be
used to create variables which can consequently only be set to one of those discrete
values.

Enumerated types and constants are declared using the following format:

 enum <type_identifier> { identifier_list };

The optional type_identifier is a user-defined name for this enumerator group.

The identifier_list is a comma-delimited list of user-defined identifiers that each
represents a discrete value. These identifiers become like normal constants where their
individual values are automatically set as incrementing integers starting from 0. The
values themselves don’t matter as much as the identifier names, however, the values
can be manually set as well using the form identifier = value as a list entry.

3.5.2.1 – Translation of Enumerated Constants

Table 16 – Enumerated Constants
Example Translation

enum { off, on }; VAR off, on
enum mode { norm, run = 0, alt, suspended }; VAR norm, #0, run, alt, suspended

3.6 – Methods

Methods are functions that belong to an object and contain code that performs a given
task. In PMC, there are C methods and Assembly methods. Since most methods are C
methods, this text simply refers to them as “methods,” and refers to Assembly methods
as “ASM methods.”

All methods in an object are accessible by other methods within that object and most
are accessible from other objects; however, methods may optionally be scope-limited to
prevent use from outside the object. Every object contains at least one method, called
main.

3.6.1 – C Methods

C method declarations follow this syntax:

 <storage_class> <type> identifier(<parameter_list>) { declarations_and_statements }

The optional storage_class is either extern or static. Extern, the default, makes the
method accessible to other objects. Static makes the method scope-limited to the
object; it is "private" to the object so it is not accessible to other objects.

Type is one of the valid types from section 3.2.2 – Identifier Types.

Identifier is a unique name for the method; see section 3.2.1 – Identifier Rules.

Parameter_list is a comma-delimited list of parameters the method accepts. Each
parameter is listed in the form of variable and array declarations (see section 3.4 –
Variables and section 3.8.2 – Arrays), except no initializers are allowed. When
executed, the parameters are initialized with the values of the arguments provided by

Propeller Micro C Language Specification – April 15, 2010 Page 18 of 31

the calling reference. All arguments in PMC are passed to parameters by value, not by
reference; changing the parameter's value within the method has no effect on the
source argument.

Declarations_and_statements make up the body of the method and are comprised of
local variables, global variables and executable code.

The return command can be used to exit the method from other than the end.
Additionally, return supports an optional parameter, the returnvalue, which gets stored
in the method’s pre-defined result variable and returned to the caller.

3.6.1.1 – Translation of C Methods

Table 17 – C Methods
Example Translation

void main()
 {
 declarations
 statements
 }

PUB main
 declarations
 statements

static int dosomething(x)
 {
 int i, j;
 statements
 }

PRI dosomething(x) | i, j
 {
 statements
 }

3.6.2 – ASM Methods

ASM method declarations follow this syntax:

 asm identifier { data_and_instructions }

Identifier is a unique name for the ASM method; see section 3.2.1 – Identifier Rules.

Data_and_instructions make up the body of the ASM method and are comprised of
variables, constants, and executable Propeller Assembly code.

ASM methods never have declared parameters, but they always get launched into a
cog via a cognew or coginit command that delivers a 14-bit value to their cog’s par
register which can be used to convey a memory address to operate on.

ASM methods are always of type void because they don’t return any value to the caller;
except possibly through the memory pointed to by the 14-bit mempointer parameter of
the cognew or coginit command that launched it. There is no need to specify the void
type for ASM methods since they can never be anything else.

3.6.2.1 – Translation of ASM Methods

Table 18 – ASM Methods
Example Translation

asm toggle
 {
 declarations
 instructions
 }

DAT
 toggle
 org 0
 instructions
 declarations

Propeller Micro C Language Specification – April 15, 2010 Page 19 of 31

3.7 – Operations

There are three categories of expression operations: Mathematical, Comparison, and
Bitwise. Mathematical operations perform addition, subtraction, etc., and usually
involve two int values, but can include smaller types (like byte or word) or the more
complex float type. Comparison operations are like mathematical operations except
that they determine if one of the two values is greater, lesser, or equal to the other.
Bitwise operations use any numerical type, except float, to perform logical operations
with every set of two corresponding bits between two values.

Expressions can include one, two, or all three categories of operations into one
statement.

3.7.1 – Mathematical Operations

Except with the float type, all mathematical operations are performed using signed
32-bit integer math. Types smaller than an int are converted to an int at the time of the
operation, and results are converted back to smaller types when necessary.

Note that division with integer operands returns an integer result. In contrast, division
with one or two floating point operands returns a floating point result. The modulus
operator, %, always requires integer operands.

3.7.1.1 – Translation of Mathematical Operators

Most mathematical operators have no need for translation; they are equally represented
in both PMC and Spin, or they are completely derived from Spin. Table 19 shows the
details.

Table 19 – Mathematical Operators
Operator Notes Translation

= Assign x = y, x := y
++ Pre-/Post-Increment 1 ++x, x++
-- Pre-/Post-Decrement 1 --x, x--
+ Unary Positive / Binary Add 2 +x, x + y

+= Add (assign) 2 x += y
- Unary Negative / Binary Subtract 2 -x, x - y

-= Subtract (assign) 2 x -= y
* Multiply 2 x * y

*= Multiply (assign) 2 x *= y
** Multiply, return high 1, 3 x ** y

**= Multiply, return high (assign) 1, 3 x **= y
/ Divide 2 x / y

/= Divide (assign) 2 x /= y
% Modulus 2 x // y

%= Modulus (assign) 2 x //= y
~^ Sign-extend bit 7 1, 3 ~x

~~^ Sign-extend bit 15 1, 3 ~~x
~ Post-clear to 0 1, 3, 4 x~

~~ Post-set to -1 1, 3 x~~
?? Random Number 1, 3 ?x, x?
^^ Square Root 2, 3 ^^x

abs() Absolute 2 ||x
#> Limit minimum 1, 3 x #> y

#>= Limit minimum (assign) 1, 3 x #>= y

Propeller Micro C Language Specification – April 15, 2010 Page 20 of 31

<# Limit maximum 1, 3 x <# y
<#= Limit maximum (assign) 1, 3 x <#= y

1
 Integers only.

2
 Integer operators are used when both operands are one of the integer types. The floating-point library's math methods

are used when at least one of the operands is a float type.
3
 New operator in C; derived from Spin.

4
 Post-clear (~) differentiates itself from Bitwise NOT (~) by being postfix rather than prefix.

3.7.2 – Comparison Operations

All comparison operations are performed using signed 32-bit integer math. Types
smaller than an int are converted to an int at the time of the operation.

The Boolean operators (&&, ||, and !) promote non-zero values to true.

Boolean comparisons using && and || operators always evaluate both operands; no
short-circuit evaluation is performed.

The result of a comparison is always a bool.

3.7.2.1 – Translations of Comparison Operators

Many comparison operators have no need for translation; they are equally represented
in both PMC and Spin, or they are completely derived from Spin. Note that there are
some incompatible character patterns between ANSI C and Spin– in those cases, a
new character pattern is used for the operator is used to resolve issue. Table 20 shows
the details.

Table 20 – Comparison Operators
Operator Notes Translation

< Less than x < y
<:= Less than (assign) 1 x <= y
> Greater than x > y

>:= Greater than (assign) 1 x >= y
<= Less than or equal x =< y

<== Less than or equal (assign) 1 x =<= y
>= Greater than or equal x => y

>== Greater than or equal (assign) 1 x =>= y
== Equal x == y

=== Equal (assign) 1 x === y
!= Not equal x <> y

!== Not equal (assign) 1 x <>= y
! Boolean NOT NOT x

&& Boolean AND x AND y
&&= Boolean AND (assign) 1 x AND= y

|| Boolean OR x OR y
||= Boolean OR (assign) 1 x OR= y

1
 New operator in C; derived from Spin.

3.7.3 – Bitwise Operations

All bitwise operations are performed using the 32-bit integer type. Types smaller than
an int are converted to an int at the time of the operation, and results are converted
back to smaller types when necessary.

Propeller Micro C Language Specification – April 15, 2010 Page 21 of 31

3.7.3.1 – Translations of Bitwise Operators

Many bitwise operators have no need for translation; they are equally represented in
both PMC and Spin, or they are completely derived from Spin. Table 21 shows the
details.

Table 21 – Bitwise Operators
Operator Notes Translation

~ Bitwise NOT !x
& Bitwise AND x & y

&= Bitwise AND (assign) x &= y
| Bitwise OR x | y

|= Bitwise OR (assign) x |= y
^ Bitwise XOR x ^ y

^= Bitwise XOR (assign) x ^= y
<< Shift left x << y

<<= Shift left (assign) x <<= y
>> Shift right x >> y

>>= Shift right (assign) x >>= y
<+ Rotate left 1 x <- y

<+= Rotate left (assign) 1 x <-= y
+> Rotate right 1 x -> y

+>= Rotate right (assign) 1 x ->= y
~> Shift arithmetic right 1 x ~> y

~>= Shift arithmetic right (assign) 1 x ~>= y
>< Reverse 1 x >< y

><= Reverse (assign) 1 x ><= y
|< Decode 1 x |< y
>| Encode 1 x >| y

1
 New operator in C; derived from Spin.

3.8 – Memory Access

PMC provides access to memory through variables, arrays, pointers, structures, and
direct access. Except for pointer and structure syntax, all of these features are naturally
available through Spin so very little translation is performed.

3.8.1 – Variables

Variables are similar in both PMC and Spin. See section 3.2 – Identifiers, and section
3.4 – Variables for details and translation information.

3.8.2 – Arrays

Arrays are declared using the syntax:

 type identifier [size] <[size]…> <, identifier [size] <[size]…>…>;

Valid types are defined in section 3.2.2 – Identifier Types.

The identifier must be a unique identifier as defined by section 3.2.1 – Identifier Rules.

The size is an integer constant indicating how many elements of type are contained in
the array identifier. Optionally, additional size attributes can be appended to create
multi-dimensional arrays.

Propeller Micro C Language Specification – April 15, 2010 Page 22 of 31

Arrays can also be initialized using an initializer list in the following form:

type identifier [<size>] <[size…]> = { listofvalues };

Note that size is optional in the first dimension and the final array size, if not specified, is
determined by the size of the listofvalues.

Listofvalues is a comma-delimited list of values, one value per element in the array.
Listofvalues may be a simple string, "charstring", without the { }, if type is char.

To access a particular element in an array, use the syntax: identifier [offset] {[offset]…}

Note that you may also use pointer syntax, see section 3.8.3 – Pointers.

Note that offset is in the range 0 to size-1. There is no range checking performed at
run-time; it is up to the developer to always ensure that the offset is within the declared
range of the array.

Array access syntax can actually be used on any identifier that points to memory, not
just those that were declared as arrays. This allows indexing through any memory
starting at the address of the identifier and in units based on the identifier type.

3.8.2.1 – Translation of Arrays

The following table demonstrates some array declaration and accessing possibilities.

Table 22 – Arrays and Indexes
Example Notes Translation

int temp[25]; Single-dim array declaration VAR long temp[25]
short someval[3][5]; Multi-dim array declaration VAR word someval[3 * 5]

temp[0] = 1024; Reference temp[0] := 1024
temp[idx] = x; Reference temp[idx] := x

someval[0][4] = 50; Reference to multi-dim array someval[0 * 5 + 4] := 50

int myarray[3] = { 10, 20, 30 }; Initialized array declaration

VAR long myarray[3]
myarray[0] := 10
myarray[1] := 20
myarray[2] := 30

3.8.3 – Pointers

Pointers simply provide an alias to a location in memory and may be used as an
alternative to arrays.

In PMC, like ANSI C, arrays are really pointers, so referencing just the array identifier
without an index returns the address of the 0th element. In Spin, however, the array
identifier without an index returns the contents of the 0th element.

Pointers are declared using the syntax: type *identifier

Valid types are defined in section 3.2.2 – Identifier Types.

The identifier must be a unique identifier as defined by section 3.2.1 – Identifier Rules.

Pointers are referenced using the syntax: *identifier --or-- *(identifier + offset)

Note that you may also use array syntax, see section 3.8.2 – Arrays.

3.8.3.1 – Translation of Pointers

The following table demonstrates some array and pointer declarations and accessing
possibilities.

Propeller Micro C Language Specification – April 15, 2010 Page 23 of 31

Table 23 – Pointers
Example Notes Translation

int temp[25], *p;
p = &temp;

temp[0] = 100;
temp[24] = 200;
temp[12] = temp[24] * 2;

*p = 100;
*(p+24) = 200;
*(&temp + 12) = *(p+24) * 2;

Integer array and pointer.

The array references and the
pointer references do the

same thing.

VAR long temp[25], p
p := @temp

temp[0] := 100
temp[24] := 200
temp[12] := temp[24] * 2;

long[p] := 100
long[p][24] := 200
long[@temp][12] := long[p][24] * 2

Continuing with the example above, and assuming x is an integer variable or constant,
the following references are equivalent:

&temp[x], temp+x, p+x //pointers to the x-th array element

And the following references are equivalent:

temp[x], *(temp+x), *(p+x), p[x] /the x-th array element

Pointers can be set to 0 or NULL to indicate they are invalid or yet unused.

3.8.4 – Structures

Structures are groupings of data that make up a logical unit. The data entities in a
structure are called members. Members are variables, arrays, or pointers with standard
types (char, int, etc.) or can even be other structures.

Structures are declared using the following format:

 struct <tag> { member_list } <identifier_list>;

The optional tag is an identifier of the derived type that is this structure. The tag can be
used later, for example, to declare variables or method parameters of this structure
type.

The member_list is a semicolon-separated list of variable declarations using the form:

 type identifier;;

The optional identifier_list is a comma-delimited list of identifiers to declare as this
structure type.

3.8.4.1 – Translation of Structures

The following table demonstrates some structure declarations, references, and their
translations.

Table 24 – Structures
Example Notes Translation

struct date
 {
 byte month;
 byte day;
 word year;
 };

Declaration of date
structure with three

members.

<no code generated since no
variables declared of type date>

struct date today; Declare today as a VAR

Propeller Micro C Language Specification – April 15, 2010 Page 24 of 31

structure of type date
(assuming declaration

above)

 byte today_month
 byte today_day
 word today_year

 today.month = 4; Set member. today_month := 4

struct date dates[5];
Declare array of date

structures.

VAR
 byte dates_month[5]
 byte dates_day[5]
 word dates_year[5]

 dates[2].year = 2010;
Set member of structure

element.
 dates_year[2] := 2010

 dates[0] = dates[2];
Set structure element

contents to that of another
structure element.

 dates_month[0] := dates_month[2]
 dates_day[0] := dates_day[2]
 dates_year[0] := dates_year[2]

3.8.5 – Direct Access

Direct access to memory is achieved through various PMC features.

3.8.5.1 – Typed Direct Access

PMC supports the use of a type as an array identifier for direct memory access. This
can be used in place of a variable, array, or pointer identifier for reading and writing
values in memory.

The syntax is: type[base] <[offset]>

The type can be any identifier type except void.

Base is the starting address to access as a type value.

The optional offset indicates how many units of size type to index beyond the base
address.

When used to read memory, the type returned is always type. When used to write
memory, the type written is the value converted to type, if necessary.

3.8.5.1.1. – Translation of Typed Direct Access

The following table demonstrates some array, pointer, and typed direct access
possibilities.

Table 25 – Typed Direct Access
Example Notes Translation

int temp[25], *p;
p = &temp;

temp[0] = 100;
temp[24] = 200;
temp[12] = temp[24] * 2;

*p = 100;
*(p+24) = 200;
*(&temp + 12) = *(p+24) * 2;

int[&temp] = 100;
int[p][24] = 200;
int[&temp][12] = int[p][24] * 2;

Integer array and pointer.

The array references, pointer
references, and first three

typed direct access
references do the same thing.

The last two typed direct
accesses reference an

address via a constant value
that doesn't relate to any

existing identifier.

VAR long temp[25], p
p := @temp

temp[0] := 100
temp[24] := 200
temp[12] := temp[24] * 2;

long[p] := 100
long[p][24] := 200
long[@temp][12] := long[p][24] * 2

long[@temp] := 100
long[p][24] := 200
long[@temp][12] := long[p][24] * 2

Propeller Micro C Language Specification – April 15, 2010 Page 25 of 31

*p = int[0]
*p = byte[4]

long[p] := long[0]
long[p] := byte[4]

3.8.5.2 – memset()

The memset() function in PMC is an enhanced form of its namesake in the Standard
ANSI C Library. Its syntax is:

void *memset(void *address, int value, int count);

This function copies value into count elements of memory starting at address and
returns a pointer to address. The size of each element depends on the type of the
address parameter provided.

Table 26 – Address Type and Resulting memset() Operation
Type of Address

Parameter Provided
Value is Operation Performed

void, bool, char, byte,
signed char, signed
byte, or non-typed

constant

Truncated to
byte

Truncated value is copied to count bytes of memory
starting at address.

short, word, signed
short, or signed word

Truncated to
word

Truncated value is copied to count words of memory
starting at word-aligned address.

int, long, or float Unchanged
Value is copied to count longs of memory starting at
long-aligned address.

The adjustable element size feature of memset() provides a deterministic optimization
on the Propeller that results in fast operation.

When a constant is entered as the address, it will be treated as a byte unless it is cast
to another type. Example: memset((word) 1244, 65000, 20); will copy the
value 65000 to 20 words of memory starting at address 1244 (byte locations 1244
through 1283). Note that setting the address to (word) 1245 will also have the
same results since the address 1245 will automatically be word-aligned to 1244.

3.8.5.2.1. – Translation of memset()

The following demonstrates memset() translation.

Table 27 – Memset()
Example Notes Translation

char x[10];
int temp[25];

memset(x, 'A', 10);
memset(temp, 75000, 25);

Character and integer arrays are
filled with 'A' and 75000,

respectively.

VAR byte x[10]
VAR long temp[25]

bytefill(@x, "A", 10)
longfill(@temp, 75000, 25)

3.8.5.3 – memmove()

The memmove() function in PMC is an enhanced form of its namesake in the Standard
ANSI C Library. Its syntax is:

void *memmove(void *destination, void *source, int count);

Propeller Micro C Language Specification – April 15, 2010 Page 26 of 31

This function copies count elements from memory starting at source, stores them in
memory starting at destination and returns a pointer to destination. The size of each
element is that of the smallest type of the destination and source parameters provided.
If both destination and source parameters are of the same type, the element size will be
of that type.

Table 28 – Address Type and Resulting memmove() Operation
Type of Parameter

Provided for
Destination 1 Source 1

Element
size is

Operation Performed

byte-sized
byte, word,

or long-sized
byte

Count byte-sized elements are copied from source
into destination.

byte-sized byte
Count byte-sized elements are copied from source
into destination.

word-sized
word or

long-sized
word

Count word-sized elements are copied from
word-aligned source into word-aligned destination.

byte-sized byte
Count byte-sized elements are copied from source
into destination.

word-sized word
Count word-sized elements are copied from
word-aligned source into word-aligned destination.

long-sized

long-sized long
Count long-sized elements are copied from
long-aligned source into long-aligned destination.

1
 Byte-sized types are void, char, byte, signed char, signed byte, and non-typed constant. Word-sized types are short,

word, signed short, and signed word. Long-sized types are int, long, and float.

The adjustable element size feature of memmove() provides a deterministic
optimization on the Propeller that results in fast operation.

When a constant is entered as the source, it will be treated as a byte unless it is cast to
another type. Example: memmove((word) 1244, (word) 1850, 20); will copy
20 word-sized values starting from location 1850 into memory starting at location 1244.
In other words, the contents of byte locations 1850 through 1889 are copied to byte
locations 1244 through 1283. Note that setting the destination to (word) 1245, or the
source to (word) 1851 will also have the same result since the each address will be
automatically word-aligned.

3.8.5.3.1. – Translation of memmove()

The following demonstrates memmove() translation.

Table 29 – Memmove()
Example Notes Translation

char x[10];
int temp[25];

memmove(temp, x, 8);
memmove((int) x, &temp[2], 2);

Contents of character and
integer arrays are copied back

and forth.

VAR byte x[10]
VAR long temp[25]

bytemove(@temp, @x, 8)
longmove(@x, @temp[2], 2)

3.9 – Conditional Statements

There are two forms of statements that affect execution conditionally, if and switch.

Propeller Micro C Language Specification – April 15, 2010 Page 27 of 31

3.9.1 – The if..else Statement

The if statement tests one or more conditions and either executes or skips blocks of
code accordingly. The else keyword works with it to clearly define alternative blocks.

3.9.1.1 – Translation of if..else

Table 30 – If..else Statements
Example Translation

if (a = b) return 5;
if (a = b)
 return 5

if (x > y)
 z = x;
else
 z = y;

if (x > y)
 z := x
else
 z := y

if (temp <= 16)
 {
 xyz = temp * 2;
 return xyz;
 }
else if (temp < 32)
 xyz = temp / 2;
else
 xyz = 0;

if (temp =< 16)
 xyz := temp * 2
 return xyz
elseif (temp < 32)
 xyz := temp / 2
else
 xyz := 0

3.9.2 – The switch Statement

The switch statement tests an expression for equality against one or more other
expressions and executes the code block of the first match. The case keyword
precedes each constant expression in which to test against and the default keyword is
optionally used to catch all other cases. The break command must be included to exit
the case block, otherwise it will continue executing statements from the cases below it.

3.9.2.1 – Translation of switch..case

Table 31 – Switch..case Statements
Example Translation

switch (temp+1)
 {
 case 1: xyz = 2;
 break;
 case 25: action();
 default: return 0;
 }

case (temp+1)
 1: xyz := 2
 25: action()
 return 0
 other: return 0

3.10 – Loop Statements

There are three forms of looping statements, while, do..while, and for.

3.10.1 – The while Loop

The while loop is a zero+ iteration mechanism; it may skip its block of statements all
together if the initial condition is false, or it may execute them one or more times as long
as the condition is true. The break command can be used to exit the loop immediately.

Propeller Micro C Language Specification – April 15, 2010 Page 28 of 31

The continue command may be used to skip the remainder of the loop’s current
iteration and immediately start the next iteration.

3.10.1.1 – Translation of while

Table 32 – While Loops
Example Translation

 while (x < 16)
 {
 action();
 x++;
 }

repeat while (x < 16)
 action
 x++

 while (true)
 {
 action();
 if (x++ > 5) break;
 }

repeat
 action
 if (x++ > 5)
 quit

 while (x++ < 10)
 {
 if (x = 5) continue;
 action();
 y = x + 1;
 }

repeat while (x++ < 10)
 jf (x = 5)
 next
 action
 y := x + 1

3.10.2 – The do..while Loop

The do..while loop, in contrast to the while loop, is a one+ iteration mechanism; it
always executes it’s block of statements at least once, and may continue to execute
them more times as long as the condition is true. Similar to while, the break and
continue commands can be used to immediately exit the loop, or skip the rest of the
current iteration, respectively.

3.10.2.1 – Translation of do..while

Table 33 – Do..while Loops
Example Translation

 do
 {
 action();
 x++;
 }
while (x < 16);

repeat
 action
 x++
while (x < 16)

3.10.3 – The for Loop

The for loop executes its block of statements zero or more times, depending on the
condition expression. Similar to while and do..while, the break and continue
commands can be used to immediately exit the loop, or skip the rest of the current
iteration, respectively.

3.10.3.1 – Translation of for

Table 34 – For Loops
Example Translation

 for (x = 0; x < 16; x++) repeat x from 0 to 15

Propeller Micro C Language Specification – April 15, 2010 Page 29 of 31

 action(); action

for (x = 20; x > 10; x--, action());
repeat x from 20 to 11
 action

for (;;;)
 action();

repeat
 action

3.11 – Unconditional Branching Commands

There are three unconditional branching commands in PMC: continue, break, and
return.

3.11.1 – continue

The continue command can only be used within the body of a loop (while, do..while,
or for) to skip the rest of the current iteration and immediately start the next iteration.

3.11.1.1 – Translation of continue

See section 3.10.1.1 – Translation of while for an example.

3.11.2 – break

The break command can only be used in a loop (while, do..while, or for) or a switch
statement to immediately exit the loop or switch statement.

3.11.2.1 – Translation of break

See section 3.10.1.1 – Translation of while for an example.

3.11.3 – repeat

The return command exits a method immediately and optionally returns a value. If
return is given without the optional value, the value returned (by method’s of types
other than void) is that of the current local result variable.

3.11.3.1 – Translation of return

Table 35 – return
Example Translation

 return; return
 return 25; return 25

3.12 – Built-in Functions

The PMC language provides much of the Propeller architecture’s functionality through
built-in functions. These functions closely resemble their Spin language counterparts
and are available automatically without the need to "include" any header files.

3.12.1.1 – Translation of Built-in Functions

Variables are used in Table 36 to indicate the return value of the function as well as to
provide a practical translation example. Note that bl is a bool variable, b is a byte
variable and i is an integer variable.

Table 36 – Built-in Functions
Example Notes Translation

b = chipver(); Get Propeller version number b := chipver

i = clkfreq();
Get current system clock freq;

Hz
i := clkfreq

Propeller Micro C Language Specification – April 15, 2010 Page 30 of 31

b = clkmode();
Get current clock mode

setting
b := clkmode

clkset(mode, frequency); Set clock mode and frequency clkset(mode, frequency)
coginit(cogid, method, stackpointer); Start a cog by ID for C code coginit(cogid, method, stackpointer)

coginit(cogid, asmmethod, mempointer);
Start a cog by ID for Asm

code
coginit(cogid, @asmmethod, mempointer)

b = cognew(method, stackpointer); Start a new cog for C code b := cognew(method, stackpointer)
b = cognew(asmmethod, mempointer); Start a new cog for Asm code b := cognew(@asmmethod, mempointer)
cogstop(cogid); Stop cog by ID cogstop(cogid)

bl = lockclr(id);
Clear semaphore; get

previous state
bl := lockclr(id)

b = locknew; Get new semaphore ID b := locknew
lockret(id); Return semaphore lockret(id)

bl = lockset(id);
Set semaphore; get previous

state
bl := lockset(id)

i = lookdown(value:expressionlist);
Get the one-based index of a

value
i := lookdown(value:expressionlist)

i = lookdownz(value:expressionlist);
Get the zero-based index of a

value
i := lookdownz(value:expressionlist)

i = lookup(index:expressionlist);
Get the value at a one-based

index
i := lookup(index:expressionlist)

i = lookupz(index:expressionlist);
Get the value at a zero-based

index
i := lookupz(index:expressionlist)

reboot; Reset the Propeller reboot
bl = strcomp(straddr1, straddr2); Compare strings for equality bl := strcomp(straddr1, straddr2)
i = strsize(straddr); Get length of string i := strsize(straddr)

waitcnt(value);
Pause cog execution

temporarily
waitcnt(value)

waitpeq(state, mask, port);
Pause cog execution until I/O

pins match state(s)
waitpeq(state, mask, port)

waitpne(state, mask, port);
Pause cog execution while I/O

pins match state(s)
waitpne(state, mask, port)

waitvid(colors, pixels);
Pause cog execution until

video generator is ready for
data

waitvid(colors, pixels)

3.13 – Predefined Variables

A set of predefined variables exists in PMC to give read or read/write access to
Propeller attributes that commonly change during runtime. These variables deliver
direct access to special Propeller registers and their names exactly match their Spin
language counterparts.

3.13.1.1 – Translation of Predefined Variables

An int variable (i) is used in Table 37 to demonstrate usage of the built-in variable.

Table 37 – Predefined Variables
Example Notes Translation

i = cnt;
Get current 32-bit System
Counter value (read only)

i := cnt

i = ctra; --or-- ctra = i;
Get or set Counter A Control

Register
i := ctra --or-- ctra := i

i = ctrb; --or-- ctrb = i;
Get or set Counter B Control

Register
i := ctrb --or-- ctrb := i

dira[pin(s)] = i; Set Direction Register for port A dira[pin(s)] = i;

i = frqa; --or-- frqa = i;
Get or set Counter A Frequency

Register
i := frqa --or-- frqa := i

Propeller Micro C Language Specification – April 15, 2010 Page 31 of 31

i = frqb; --or-- frqb = i;
Get or set Counter B Frequency

Register
i := frqb --or-- frqb := i

i = ina[pin(s)];
Get Input Register value for port

A (read only)
i := ina[pin(s)]

outa[pin(s)] = i; Set Output Register for port A outa[pin(s)] = i

i = par;
Get cog boot parameter register

(read only)
i := par

i = phsa; --or-- phsa = i;
Get or set Counter A Phase

Register
i := phsa --or-- phsa := i

i = phsb; --or-- phsb = i;
Get or set Counter B Phase

Register
i := phsb --or-- phsb := i

i = result; --or-- result = i;
Get or set local variable result

value
i := result --or-- result := i

i = spr[index]; --or-- spr[index] = i;
Get or set Special Purpose

Register
i := spr[index] --or-- spr[index] := i

i = vcfg; --or-- vcfg = i;
Get or set Video Configuration

Register
i := vcfg --or-- vcfg := i

i = vscl; --or-- vscl = i; Get or set Video Scale Register i := vscl --or-- vscl := i

The variables dira, ina, and outa are I/O port registers and have special features. They
are bit arrays, meaning their pin(s) field can indicate a single bit to address; however,
pin(s) can also be a contiguous pin number range in the form pinA..pinB and the
registers bits corresponding to pins A through pins B will be address.

